1,032 research outputs found
Hybrid client-server and P2P network for web-based collaborative 3D design
National audienceOur proposed research project is to enable 3D distributed visualization and manipulation involving collaborative effort through the use of web-based technologies. Our project resulted from a wide collaborative application research fields: Computer Aided Design (CAD), Building Information Modeling (BIM) or Product Life Cycle Management (PLM) where design tasks are often performed in teams and need a fluent communication system. The system allows distributed remote assembling in 3D scenes with real-time updates for the users. This paper covers this feature using hybrid networking solution: a client-server architecture (REST) for 3D rendering (WebGL) and data persistence (NoSQL) associated to an automatically built peer-to-peer (P2P) mesh for real-time communication between the clients (WebRTC). The approach is demonstrated through the development of a web-platform prototype focusing on the easy manipulation, fine rendering and light update messages for all participating users. We provide an architecture and a prototype to enable users to design in 3D together in real time with the benefits of web based online collaboration
Effects of radio-frequency fields on bacterial cell membranes and nematode temperature-sensitive mutants
Membrane-related bioeffects have been reported in response to both radio-frequency (RF) and extremely low-frequency (ELF) electromagnetic fields (EMFs), particularly in neural cells. We have tested whether RF fields might cause inner membrane leakage in ML35 E. coli cells, which express β-galactosidase (lacZ) constitutively, but lack the lacY permease required for substrate entry. The activity of lacZ (indicating substrate leakage through the inner cell membrane) was increased only slightly by RF exposure (1 GHz, 0.5 W) over 45 min. Since lacZ activity showed no further increase with a longer exposure time of 90 min, this suggests that membrane permeability per se is not significantly affected by RF fields, and that slight heating (≤ 0.1°C) could account for this small difference. Temperature-sensitive (ts) mutants of the nematode, Caenorhabditis elegans, are wild-type at 15°C but develop the mutant phenotype at 25°C; an intermediate temperature of 21°C results in a reproducible mixture of both phenotypes. For two ts mutants affecting transmembrane receptors (TRA-2 and GLP-1), RF exposure for 24 h during the thermocritical phase strongly shifts the phenotype mix at 21°C towards the mutant end of the spectrum. For ts mutants affecting nuclear proteins, such phenotype shifts appear smaller (PHA-1) or non-significant (LIN-39), apparently confirming suggestions that RF power is dissipated mainly in the plasma membrane of cells. However, these phenotype shifts are no longer seen when microwave treatment is applied at 21°C in a modified exposure apparatus that minimises the temperature difference between sham and exposed conditions. Like other biological effects attributed to microwaves in the C. elegans system, phenotype shifts in ts mutants appear to be an artefact caused by very slight heating
Interglacial climatic variability in Southern Europe during the last 425,000 years from NW Iberian marine pollen records
Orbital-scale climate forcing of grassland burning in southern Africa.
This is the final version of the article. Available from the publisher via the DOI in this record.Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.We thank Linda Rossignol for picking the foraminifera for carbon radiometric dating, Olivier Ther for XRF analysis, Marie-Hélène Castera and Muriel Georget for laboratory assistance, V. Hanquiez for extracting bathymetric data, Thibault Caley for providing the East African monsoon regression model data, Lydie Dupont for sharing the pollen data of cores GeoB1711 and MD96-2048, and Louis Scott for providing Wonderkrater’s charcoal data. This research was funded by European Research Council Advanced Grant TRACSYMBOLS 249587. The postdoctoral position of A.-L.D was funded by this project
Climatic variability of the last five isotopic interglacials : direct land-sea correlation from multiproxy analyses of northwestern Iberian margin deep-sea cores
Climate variability during the last glacial-interglacial transition and Holocene in north-western Iberian margin and adjacent landmasses
Millennial-scale climatic variations in northwestern Iberia during the last 25.000 years from the MD99-2331 pollen-rich deep sea core
Climate variability of the last 25.000 years in and off Iberia : direct land-sea correlation from the multiproxy analysis of a Northwestern Iberian Margin deep-sea core
Correlation directe de la variabilité climatique ocean-continent des derniers 25.000 ans a partir de l'analyse multi-proxy d'une carotte marine de la marge Nord-Ouest Ibérique
Slow dynamics, aging, and glassy rheology in soft and living matter
We explore the origins of slow dynamics, aging and glassy rheology in soft
and living matter. Non-diffusive slow dynamics and aging in materials
characterised by crowding of the constituents can be explained in terms of
structural rearrangement or remodelling events that occur within the jammed
state. In this context, we introduce the jamming phase diagram proposed by Liu
and Nagel to understand the ergodic-nonergodic transition in these systems, and
discuss recent theoretical attempts to explain the unusual,
faster-than-exponential dynamical structure factors observed in jammed soft
materials. We next focus on the anomalous rheology (flow and deformation
behaviour) ubiquitous in soft matter characterised by metastability and
structural disorder, and refer to the Soft Glassy Rheology (SGR) model that
quantifies the mechanical response of these systems and predicts aging under
suitable conditions. As part of a survey of experimental work related to these
issues, we present x-ray photon correlation spectroscopy (XPCS) results of the
aging of laponite clay suspensions following rejuvenation. We conclude by
exploring the scientific literature for recent theoretical advances in the
understanding of these models and for experimental investigations aimed at
testing their predictions.Comment: 22 pages, 5 postscript figures; invited review aricle, to appear in
special issue on soft matter in Solid State Communication
- …
