22 research outputs found

    Stackfile Database

    Get PDF
    This software provides storage retrieval and analysis functionality for managing satellite altimetry data. It improves the efficiency and analysis capabilities of existing database software with improved flexibility and documentation. It offers flexibility in the type of data that can be stored. There is efficient retrieval either across the spatial domain or the time domain. Built-in analysis tools are provided for frequently performed altimetry tasks. This software package is used for storing and manipulating satellite measurement data. It was developed with a focus on handling the requirements of repeat-track altimetry missions such as Topex and Jason. It was, however, designed to work with a wide variety of satellite measurement data [e.g., Gravity Recovery And Climate Experiment -- GRACE). The software consists of several command-line tools for importing, retrieving, and analyzing satellite measurement data

    Impact of mixing and aeration on cell culture performance and quality

    Get PDF
    In order to support large-scale biologics manufacturing, it is important to establish scale-down models which can match the process performance and product quality of large scale bioreactors. This can potentially be achieved by mimicking the microenvironment that the cells experience in large scale by maintaining same set points for scale independent parameters and scaling down other scale dependent parameters such as agitation and aeration. In order to understand the impact of agitation and aeration on cell culture performance and product quality, we studied different impellers and sparger configurations in a 3L scale down model using CHO cells. The experiments showed significant impacts of impeller types, impeller orientation, and sparger types on cell culture performance and product quality. This data along with additional bioreactor characterization data for kLa, mixing times and shear stress will be presented. These studies demonstrate the importance of microenvironment as cell culture processes are scaled up or down and help establish a successful scale down model for a product manufactured at multiple manufacturing sites

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    JMR Noise Diode Stability and Recalibration Methodology after Three Years On-Orbit

    No full text
    The Jason Microwave Radiometer (JMR) is included on the Jason-1 ocean altimeter satellite to measure the wet tropospheric path delay (PD) experienced by the radar altimeter signal. JMR is nadir pointing and measures the radiometric brightness temperature (T(sub B)) at 18.7, 23.8 and 34.0 GHz. JMR is a Dicke radiometer and it is the first radiometer to be flown in space that uses noise diodes for calibration. Therefore, monitoring the long term stability of the noise diodes is essential. Each channel has three redundant noise diodes which are individually coupled into the antenna signal to provide an estimate of the gain. Two significant jumps in the JMR path delays, relative to ground truth, were observed around 300 and 700 days into the mission. Slow drifts in the retrieved products were also evident over the entire mission. During a recalibration effort, it was determined that a single set of calibration coefficients was not able to remove the calibration jumps and drifts, suggesting that there was a change in the hardware and time dependent coefficients would be required. To facilitate the derivation of time dependent coefficients, an optimal estimation based calibration system was developed which iteratively determines that set of calibration coefficients which minimize the RMS difference between the JMR TBs and on-Earth hot and cold absolute references. This optimal calibration algorithm was used to fine tune the front end path loss coefficients and derive a time series of the JMR noise diode brightness temperatures for each of the nine diodes. Jumps and drifts, on the order of 1% to 2%, are observed among the noise diodes in the first three years on-orbit

    Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    No full text
    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated

    On the Long-Term Stability of Microwave Radiometers Using Noise Diodes for Calibration

    No full text
    Results are presented from the long-term monitoring and calibration of the National Aeronautics and Space Administration Jason Microwave Radiometer (JMR) on the Jason-1 ocean altimetry satellite and the ground-based Advanced Water Vapor Radiometers (AWVRs) developed for the Cassini Gravity Wave Experiment. Both radiometers retrieve the wet tropospheric path delay (PD) of the atmosphere and use internal noise diodes (NDs) for gain calibration. The JMR is the first radiometer to be flown in space that uses NDs for calibration. External calibration techniques are used to derive a time series of ND brightness for both instruments that is greater than four years. For the JMR, an optimal estimator is used to find the set of calibration coefficients that minimize the root-mean-square difference between the JMR brightness temperatures and the on-Earth hot and cold references. For the AWVR, continuous tip curves are used to derive the ND brightness. For the JMR and AWVR, both of which contain three redundant NDs per channel, it was observed that some NDs were very stable, whereas others experienced jumps and drifts in their effective brightness. Over the four-year time period, the ND stability ranged from 0.2% to 3% among the diodes for both instruments. The presented recalibration methodology demonstrates that long-term calibration stability can be achieved with frequent recalibration of the diodes using external calibration techniques. The JMR PD drift compared to ground truth over the four years since the launch was reduced from 3.9 to - 0.01 mm/year with the recalibrated ND time series. The JMR brightness temperature calibration stability is estimated to be 0.25 K over ten days
    corecore