240 research outputs found

    Emergent Strain of Human Adenovirus Endemic in Iowa

    Get PDF
    We evaluated 76 adenovirus type 7 (Ad7) isolates collected in Iowa from 1992 to 2002 and found that genome type Ad7d2 became increasingly prevalent. By 2002, it had supplanted all other Ad7 genome types. The association of Ad7d2 with severe illness and death calls for heightened public health concern

    Megaphylogeny resolves global patterns of mushroom evolution

    Get PDF
    Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.Fil: Varga, Torda. Hungarian Academy Of Sciences; HungríaFil: Krizsán, Krisztina. Hungarian Academy Of Sciences; HungríaFil: Földi, Csenge. Hungarian Academy Of Sciences; HungríaFil: Dima, Bálint. Eötvös Loránd University; HungríaFil: Sánchez-García, Marisol. Clark University; Estados UnidosFil: Lechner, Bernardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Sánchez-Ramírez, Santiago. University of Toronto; CanadáFil: Szöllosi, Gergely J.. Eötvös Loránd University; HungríaFil: Szarkándi, János G.. University Of Szeged; HungríaFil: Papp, Viktor. Szent István University; HungríaFil: Albert, László. Hungarian Mycological Society; HungríaFil: Andreopoulos, William. United States Department Of Energy. Joint Genome Institute; Estados UnidosFil: Angelini, Claudio. Jardin Botanico Nacional Ma. Moscoso; República DominicanaFil: Antonín, Vladimír. Moravian Museum; República ChecaFil: Barry, Kerrie W.. United States Department Of Energy. Joint Genome Institute; Estados UnidosFil: Bougher, Neale L.. Western Australian Herbarium; AustraliaFil: Buchanan, Peter. Manaaki Whenua-landcare Research; Nueva ZelandaFil: Buyck, Bart. Muséum National d'Histoire Naturelle; FranciaFil: Bense, Viktória. Hungarian Academy Of Sciences; HungríaFil: Catcheside, Pam. State Herbarium Of South Australia; AustraliaFil: Chovatia, Mansi. United States Department Of Energy. Joint Genome Institute; Estados UnidosFil: Cooper, Jerry. Manaaki Whenua-landcare Research; Nueva ZelandaFil: Dämon, Wolfgang. Oberfeldstrasse 9; AustriaFil: Desjardin, Dennis. San Francisco State University; Estados UnidosFil: Finy, Péter. Zsombolyai U. 56.; HungríaFil: Geml, József. Naturalis Biodiversity Center; Países BajosFil: Haridas, Sajeet. United States Department Of Energy. Joint Genome Institute; Estados UnidosFil: Hughes, Karen. University of Tennessee; Estados UnidosFil: Justo, Alfredo. Clark University; Estados UnidosFil: Karasinski, Dariusz. Polish Academy of Sciences; Poloni

    Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach

    Get PDF
    A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development
    corecore