30 research outputs found

    An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage

    Full text link
    A model is proposed to assess mechanical behaviour of tissue engineering scaffolds and predict their performance in vivo during tissue regeneration. To simulate the growth of tissue inside the pores of the scaffold, the scaffold is swollen with a Poly (Vinyl alcohol) solution and subjected to repeated freezing and thawing cycles. In this way the Poly (Vinyl alcohol) becomes a gel whose stiffness increases with the number of freezing and thawing cycles. Mechanical properties of the construct immersed in water are shown to be determined, in large extent, by the water mobility constraints imposed by the gel filling the pores. This is similar to the way that water mobility determines mechanical properties of highly hydrated tissues, such as articular cartilage. As a consequence, the apparent elastic modulus of the scaffold in compression tests is much higher than those of the empty scaffold or the gel. Thus this experimental model allows assessing fatigue behaviour of the scaffolds under long-term dynamic loading in a realistic way, without recourse to animal experimentation.The UPV group acknowledges the support of the Spanish MICINN through project MAT2010-21611-C03-01. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank the microscopy service of Universitat Politecnica de Valencia for useful help and advice and Ricardo Perez Feito for technical assistance in the experimental set up.Vikingsson, LKA.; Gallego Ferrer, G.; Gómez-Tejedor, JA.; Gómez Ribelles, JL. (2014). An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials. 32:125-131. https://doi.org/10.1016/j.jmbbm.2013.12.024S1251313

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds

    Full text link
    [EN] This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Vikingsson, L.; Antolinos Turpín, CM.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering: C. 61:651-658. https://doi.org/10.1016/j.msec.2015.12.068S6516586

    An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage

    Full text link
    The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold's pores.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPVVikingsson, LKA.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics. 48(7):1310-1317. https://doi.org/10.1016/j.jbiomech.2015.02.013S1310131748

    Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds

    Full text link
    The application of three-dimensional (3D) biomaterials to facilitate the adhesion, proliferation, and differentiation of cells has been widely studied for tissue engineering purposes. The fabrication methods used to improve the mechanical response of the scaffold produce complex and non regular structures. Apart from the mechanical aspect, the fluid behavior in the inner part of the scaffold should also be considered. Parameters such as permeability (k) or wall shear stress (WSS) are important aspects in the provision of nutrients, the removal of metabolic waste products or the mechanically-induced differentiation of cells attached in the trabecular network of the scaffolds. Experimental measurements of these parameters are not available in all labs. However, fluid parameters should be known prior to other types of experiments. The present work compares an experimental study with a computational fluid dynamics (CFD) methodology to determine the related fluid parameters (k and WSS) of complex non regular poly(L-lactic acid) scaffolds based only on the treatment of microphotographic images obtained with a microCT (lCT). The CFD analysis shows similar tendencies and results with low relative difference compared to those of the experimental study, for high flow rates. For low flow rates the accuracy of this prediction reduces. The correlation between the computational and experimental results validates the robustness of the proposed methodology.The authors gratefully acknowledge research support from the Spanish Ministry of Science and Innovation through research project DPI2010-20399-C04-01. The Instituto de Salud Carlos III (ISCIII) through the CIBER initiative and the Platform for Biological Tissue Characterization of the Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) are also gratefully acknowledged.Acosta Santamaría, VA.; Malvé, M.; Duizabo, A.; Mena Tobar, A.; Gallego Ferrer, G.; García Aznar, J.; Doblare Castellano, M.... (2013). Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds. Annals of Biomedical Engineering. 41(11):2367-2380. https://doi.org/10.1007/s10439-013-0849-8S236723804111Acosta Santamaría, V., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. Gómez Ribelles, M. Doblaré, G. Gallego Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358(23):3141–3149, 2012.Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972, 2006.Adamczyk, Z., and T. G. M. Vandeven. Deposition of particles under external forces in laminar-flow through parallel-plate and cylindrical channels. J. Colloid Interface Sci. 80(2):340–356, 1981.Alberich, B. A., D. Moratal, J. L. Escobar, J. C. Rodríguez, A. Vallés-Lluch, L. Martí-Bonmatí, et al. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 91B(1):191–202, 2009.Al-Munajjed, A., M. Hien, R. Kujat, J. P. Gleeson, and J. Hammer. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci. Mater. Med. 19(8):2859–2864, 2008.Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 5(9):722–732, 2011.Ansys (2010) CFX Theory User Manual. Canonsburg, PA: Ansys Software.Brígido, R. D., J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. J. Biomed. Mater. Res. B Appl. Biomater. 81B(2):448–455, 2007.Byrne, P. D., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554, 2007.Chor, M. V., and W. Li. A permeability measurement system for tissue engineering scaffolds. Meas. Sci. Technol. 18(1):208–216, 2007.Cozensroberts, C., J. A. Quinn, and D. A. Lauffenburger. Receptor-mediated adhesion phenomena—model studies with the radial-flow detachment assay. Biophys. J. 58(1):107–125, 1990.Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8(5):807–816, 2002.Deplaine, H., M. Lebourg, P. Ripalda, A. Vidaurre, P. Sanz-Ramos, G. Mora, F. Prósper, I. Ochoa, M. Doblaré, J. L. Gómez Ribelles, I. Izal-Azcárate, and G. Gallego Ferrer. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(l-lactic acid) scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 101(1):173–186, 2013.Dias, M. R., P. R. Fernandes, J. M. Guedes, and S. J. Hollister. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6):938–944, 2012.Freyman, T. M., I. V. Yannas, and L. J. Gibson. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater Sci. 46:273–282, 2001.Gong, S., H. Wang, Q. Sun, S. T. Xue, and J. Wang. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27(20):3793–3799, 2006.Gutierrez, R. A., and E. T. Crumpler. Potential effect of geometry on wall shear stress distribution across scaffold surfaces. Ann. Biomed. Eng. 36(1):77–85, 2008.Hammer, D. A., and D. Lauffenburger. A dynamic-model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52(3):475–487, 1987.Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376, 2006.Ho, M. H., P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138, 2004.Hutmacher, D. W., J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4):245–260, 2007.Izal, I., P. Aranda, P. Sanz-Ramos, P. Ripalda, G. Mora, F. Granero-Moltó, H. Deplaine, J. L. Gómez-Ribelles, G. G. Ferrer, V. Acosta, I. Ochoa, J. M. García-Aznar, E. J. Andreu, M. Monleón-Pradas, M. Doblaré, and F. Prósper. Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg. Sports Traumatol. Arthrosc., 2012.Kapur, S., D. J. Baylink, and K. H. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251, 2003.Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12):1728–1743, 2004.Kelly, D. J., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7):1413–1422, 2005.Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14(4):529–537, 2008.Lacroix, D., A. Chateau, M. P. Ginebra, and J. A. Planell. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326–5334, 2006.Lacroix, D., and P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9):1163–1171, 2002.Li, S., J. R. De Wijn, J. Li, P. Layrolle, and K. De Groot. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9:535–548, 2003.Melchels, F. P. W., B. Tonnarelli, A. L. Olivares, I. Martin, D. Lacroix, J. Feijen, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878–2884, 2011.O’Brien, F. J., B. A. Harley, M. A. Waller, I. Yannas, L. J. Gibson, and P. Prendergast. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15(1):3–17, 2007.Ochoa, I., J. A. Sanz, J. M. Garcia-Aznar, M. Doblare, D. M. Yunos, and A. R. Boccaccini. Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J. Biomech. 42:257–260, 2009.Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. Mater. Res. 38:543–549, 2005.Sandino, C., S. Checa, P. J. Prendergast, and D. Lacroix. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8):2446–2452, 2010.Sanz, J. A., J. M. García-Aznar, and M. Doblaré. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1):219–229, 2009.Sanz, J. A., C. Kasper, M. van Griensven, J. M. Garcia-Aznar, I. Ochoa, and M. Doblare. Mechanical and flow characterization of Sponceram® carriers: evaluation by homogenization theory and experimental validation. J. Biomed. Mater. Res. B Appl. Biomater. 87B(1):42–48, 2008.Singh, H., S. H. Teoh, H. T. Low, and D. W. Hutmacher. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119:181–196, 2005.Sjollema, J., and H. J. Busscher. Deposition of polystyrene latex-particles toward polymethylmethacrylate in a parallel plate flow cell. J. Colloid Interface Sci. 132(2):382–394, 1989.Truscello, S., G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8(4):1648–1658, 2012.Woodfield, T. B., J. Malda, J. Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161, 2004

    Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling

    Get PDF
    Granero-Molto, F.; Ripalda-Cemborain, P.; Izal-Azcarate, I.; Crespo-Cullell, I.; Duart-Vicente, J.; Deplaine, H.; Gómez Ribelles, JL.... (2013). Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage. 21S:116-116. doi:10.1016/j.joca.2013.02.246S11611621
    corecore