10 research outputs found

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Early life diet conditions the molecular response to post-weaning protein restriction in the mouse.

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madeBACKGROUND: Environmental influences fluctuate throughout the life course of an organism. It is therefore important to understand how the timing of exposure impacts molecular responses. Herein, we examine the responses of two key molecular markers of dietary stress, namely variant-specific methylation at ribosomal DNA (rDNA) and small RNA distribution, including tRNA fragments, in a mouse model of protein restriction (PR) with exposure at pre- and/or post-weaning. RESULTS: We first confirm that pre-weaning PR exposure modulates the methylation state of rDNA in a genotype-dependent manner, whereas post-weaning PR exposure has no such effect. Conversely, post-weaning PR induces a shift in small RNA distribution, but there is no effect in the pre-weaning PR model. Intriguingly, mice exposed to PR throughout their lives show neither of these two dietary stress markers, similar to controls. CONCLUSIONS: The results show that the timing of the insult affects the nature of the molecular response but also, critically, that 'matching' diet exposure either side of weaning eliminates the stress response at the level of rDNA methylation and small RNA in sperm.AFD is funded by an MRC Studentship (MR/K501372/1) and a Life Sciences Initiative Small Grant and the work was supported by a Biotechnology and Biological Sciences Research Council, UK (BB/M012494/1) grant awarded to VKR

    Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes

    No full text

    Food chain, parasites and climate changes in the high Arctic: a case study on trophically transmitted parasites of common eider Somateria mollissima at Franz Josef Land

    No full text

    The Molecular Convergence of Birdsong and Speech

    No full text
    corecore