209 research outputs found

    Jet propulsion without inertia

    Full text link
    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria

    Stabilized immersed isogeometric analysis for the Navier-Stokes-Cahn-Hilliard equations, with applications to binary-fluid flow through porous media

    Full text link
    Binary-fluid flows can be modeled using the Navier-Stokes-Cahn-Hilliard equations, which represent the boundary between the fluid constituents by a diffuse interface. The diffuse-interface model allows for complex geometries and topological changes of the binary-fluid interface. In this work, we propose an immersed isogeometric analysis framework to solve the Navier-Stokes-Cahn-Hilliard equations on domains with geometrically complex external binary-fluid boundaries. The use of optimal-regularity B-splines results in a computationally efficient higher-order method. The key features of the proposed framework are a generalized Navier-slip boundary condition for the tangential velocity components, Nitsche's method for the convective impermeability boundary condition, and skeleton- and ghost-penalties to guarantee stability. A binary-fluid Taylor-Couette flow is considered for benchmarking. Porous medium simulations demonstrate the ability of the immersed isogeometric analysis framework to model complex binary-fluid flow phenomena such as break-up and coalescence in complex geometries

    Thermo-mechanical analysis of dental silicone polymers

    Get PDF
    Soft lining materials are used to replace the inner surface of a conventional complete denture, especially for weak elderly patients, with delicate health who cannot tolerate the hard acrylic denture base. Most of these patients have fragile supporting mucosa, excessive residual ridge resorption, particularly on the mandibular arch. The application of a soft liner to the mandibular denture allows absorbing impact forces during mastication and relieving oral mucosa. Actually, the silicone rubbers constitute the main family of commercialised soft lining materials. This study was conducted to understand the relationships between the mechanical properties and the physical structure of polysiloxanes. For this purpose, a series of polysiloxanes of various chemical compositions have been investigated. The evolution of their physical structure as a function of temperature has been followed by differential scanning calorimetry (DSC). In order to facilitate comparisons, the mechanical modulus has been analysed upon the same heating rate using dynamic mechanical analysis (DMA). Polysiloxanes actually commercialised as soft denture liners are three-dimensional networks: the flexibility of chains allows a crystalline organisation in an amorphous phase leading to the low value of the shear modulus. The dynamic mechanical analysis shows that they are used in the rubbery state. So, polysiloxanes have steady mechanical properties during physiological utilisation

    Understanding Filipino rice farmer preference heterogeneity for varietal trait improvements: A latent class analysis

    Get PDF
    Using an experimental methodology based on investment games, we examine whether smallholder rice farmers from Nueva Ecija, Philippines have heterogeneous preferences for improvements in 10 rice varietal traits. We use a latent class cluster approach to identify different segments of rice producing households and their distinct preferences for trait improvements. These clusters were characterised post hoc using household, farm, and marketing characteristics. On average, farmers invested the most in rice varietal trait improvements that offered opportunities to reduce losses caused by lodging, insects and diseases. We found four classes of farmers with distinct preferences for improvements in variety traits. The clusters were significantly different in terms of household and farm characteristics. These findings can guide breeding research in the development of varieties that have the traits farmers identified for improvement, and that will address the unique needs of distinct farmer segments.Rio Maligalig, Matty Demont, Wendy J. Umberger and Alexandra Peralt

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress

    Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus

    Get PDF
    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus

    Consensus statement on concussion in sport—the 5 th international conference on concussion in sport held in Berlin, October 2016

    Get PDF
    The 2017 Concussion in Sport Group (CISG) consensus statement is designed to build on the principles outlined in the previous statements1–4 and to develop further conceptual understanding of sport-related concussion (SRC) using an expert consensus-based approach. This document is developed for physicians and healthcare providers who are involved in athlete care, whether at a recreational, elite or professional level. While agreement exists on the principal messages conveyed by this document, the authors acknowledge that the science of SRC is evolving and therefore individual management and return-to-play decisions remain in the realm of clinical judgement. This consensus document reflects the current state of knowledge and will need to be modified as new knowledge develops. It provides an overview of issues that may be of importance to healthcare providers involved in the management of SRC. This paper should be read in conjunction with the systematic reviews and methodology paper that accompany it. First and foremost, this document is intended to guide clinical practice; however, the authors feel that it can also help form the agenda for future research relevant to SRC by identifying knowledge gaps

    Accelerated discovery of two crystal structure types in a complex inorganic phase field

    Get PDF
    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them

    The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition

    Get PDF
    Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition
    corecore