178 research outputs found

    Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    Get PDF
    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial ÎČ-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum conditions for hydrolysis were obtained as 37 °C, 300 rpm, 1 mL L-1 enzyme concentration and 30 min of processing time. The lactose hydrolysis process resulted in 84 % of hydrolysis degree and 52 % of residual enzyme activity at the optimum experimental conditions obtained. After evaluation of the data, it was found that the kinetics of hydrolysis and enzyme inactivation could be represented by a first order kinetic model and a single-step non-first-order enzyme inactivation kinetic model for all process conditions applied. Also, to illustrate the effect of process variables on hydrolysis and enzyme stability, some modelling studies were performed. The activation energy for hydrolysis reaction (EA) was calculated as 50.685 kJ mol-1

    A low-cost miniature immunosensor for haemoglobin as a device for the future detection of gastrointestinal bleeding

    Get PDF
    Gastrointestinal bleeding (GIB) is a serious medical condition, which requires immediate attention to establish the cause of the bleeding. Here, we present the development of a miniaturised electrochemical impedance spectroscopy (EIS) device for the detection of GIB. The device performs EIS measurements up to 100 kHz. Following the development of an immunosensor for haemoglobin (Hb) on screen printed electrodes, the EIS device was used for detecting Hb as an early indication of bleeding. The sensor was able to detect Hb in a redox solution in a linear range between 5 ÎŒg mL−1 and 60 ÎŒg mL−1, with a limit of detection of 13.3 ÎŒg mL−1. It was also possible to detect Hb in simulated intestinal fluid, without the need for a redox solution, within a range of 10 ÎŒg mL−1 to 10 mg mL−1 with a limit of detection of 2.31 mg mL−1. The miniature EIS device developed in this work is inexpensive, with an estimated cost per unit of ÂŁ30, and has shown a comparable performance to existing commercial tools, demonstrating its potential to be used in the future as an ingestible sensor to detect GIB. All these measurements were carried out in a purpose built flow cell with supporting hardware electronics outside the cell. Integration of the hardware and the sensing electrodes was demonstrated in pill form. This pill after integration sampling fluidics has potential to be used in detecting gastrointestinal bleeding

    Cholesteatoma of the concha bullosa: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cholesteatoma is a relatively common disease within the middle ear cavity, but rarely it manifests in the paranasal sinuses. There is, to the best of our knowledge, only one other published case of cholesteatoma inside the concha bullosa in the English language literature.</p> <p>Case presentation</p> <p>An 81-year-old Caucasian woman was admitted to our hospital complaining of nasal obstruction, headache and diplopia. After endoscopic and radiological evaluation a transnasal endoscopic approach was chosen. The diagnosis of cholesteatoma was established by histopathological evaluation of the mass inside the concha bullosa.</p> <p>Conclusion</p> <p>Although it is rarely seen, cholesteatoma should be considered in the differential diagnosis of slow-growing and destructive paranasal masses.</p

    Chiral Devices for Terahertz Waves Based on Tunable Metamaterials

    Get PDF
    There are exceptional advantages in the region where Terahertz (THz) frequency takes place that could be identified as; a non-ionizing bio-innocuous property, transparent characteristics in cardboard or textiles, and extremely discriminating absorption spectral lines which can provide a “genetic code” of various bio-materials. [1,2]. The resonant effects at various terahertz frequencies that were displayed by metamaterials have created to accomplish a very important situation. Metamaterials are virtually desirable platforms for investigating chiral effects. In order to enhance these effects, producing the tunable chiral devices attracted lots of attention. Among the phase change materials for chiral metamaterials, graphene is a promising candidate due to its astonishing properties specifically in the THz and far infrared region. In this study, a chiral metamaterial gammadion structure is designed and fabricated on both sides of the sapphire substrates. A commercial COMSOL and CST Microwave Studio programs are used to design and optimize the chiral metamaterial. Numerical simulations are based on the interaction of the chiral structure with linearly and circularly polarized light. In the experimental side, a resistive evaporation and dc magnetron sputtering method is used for the deposition of gold and Sb2Se3 films respectively. A single layer graphene is used, that is grown on a copper foil by chemical vapor deposition. The thin graphene layer transferred on the Sb2Se3 coated sapphire substrates. The conventional UV lithography and ion beam etching techniques are used for patterning process. The THz characterization measurements were performed in order to assess the THz frequency response and to demonstrate the dynamically tunable chiroptical response using optical pumping [3,4]. The active polarization manipulation capability of the Sb2Se3/graphene chiral metamaterial with frequency tunability are investigated both numerically and experimentally.XVI Photonics Workshop : Book of abstracts; March 12-15, 2023; Kopaonik, Serbi

    Antenatal screening and its possible meaning from unborn baby's perspective

    Get PDF
    In recent decades antenatal screening has become one of the most routine procedure of pregnancy-follow up and the subject of hot debate in bioethics circles. In this paper the rationale behind doing antenatal screening and the actual and potential problems that it may cause will be discussed. The paper will examine the issue from the point of wiew of parents, health care professionals and, most importantly, the child-to-be. It will show how unthoughtfully antenatal screening is performed and how pregnancy is treated almost as a disease just since the emergence of antenatal screening. Genetic screening and ethical problems caused by the procedure will also be addressed and I will suggest that screening is more to do with the interests of others rather than those of the child-to be

    Animal welfare attitudes: Effects of gender and diet in university samples from 22 countries

    Get PDF
    Animal Welfare Attitudes (AWA) are defined as human attitudes towards the welfare of animals in different dimensions and settings. Demographic factors, such as age and gender are associated with AWA. The aim of this study was to assess gender differences among university students in a large convenience sample from twenty-two nations in AWA. A total of 7914 people participated in the study (5155 women, 2711 men, 48 diverse). Participants completed a questionnaire that collected demographic data, typical diet and responses to the Composite Respect for Animals Scale Short version (CRAS-S). In addition, we used a measure of gender empowerment from the Human Development Report. The largest variance in AWA was explained by diet, followed by country and gender. In terms of diet, 6385 participants reported to be omnivores, 296 as pescatarian, 637 ate a vegetarian diet and 434 were vegans (n = 162 without answer). Diet was related with CRAS-S scores; people with a vegan diet scored higher in AWA than omnivores. Women scored significantly higher on AWA than men. Furthermore, gender differences in AWA increased as gender inequality decreased

    Exchange rate volatility and capital inflows: role of financial development

    Get PDF
    There is vast literature examining the impact of exchange rate volatility on various macroeconomic aggregates such as economic growth, trade flows, domestic investment, and more recently capital flows. However, these studies have ignored the role of financial development while examining the impact of exchange rate volatility on capital flows. This study aims to analyze the impact of exchange rate volatility on capital inflows towards developing countries by incorporating the role of financial development over the time period 1980–2013. In this regard, the behavior of two types of capital flows is examined: physical capital inflows measured as foreign direct investment, and financial inflows quantified through remittance inflows. The empirical investigation comprises the direct as well as indirect effect of exchange rate volatility on capital inflows. The study employs dynamic system GMM estimation technique to empirically estimate the effect of exchange rate volatility on capital inflows. The empirical results of the study identify that exchange rate volatility dampens both physical and financial inflows towards developing countries. The indirect impact of exchange rate volatility through financial development, however, turns out positive and statistically significant. This finding reflects that financial development helps in reduc- ing the harmful impact of exchange rate volatility on capital inflows. Hence, the study concludes that a developed financial system is an important channel through which developing countries may improve capital inflows in the long run.info:eu-repo/semantics/publishedVersio

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • 

    corecore