174 research outputs found

    A ~5 M_earth Super-Earth Orbiting GJ 436?: The Power of Near-Grazing Transits

    Full text link
    Most of the presently identified exoplanets have masses similar to that of Jupiter and therefore are assumed to be gaseous objects. With the ever-increasing interest in discovering lower-mass planets, several of the so-called super-Earths (1 M_earth<M<10 M_earth), which are predicted to be rocky, have already been found. Here we report the possible discovery of a planet around the M-type star GJ 436 with a minimum mass of 4.7+/-0.6 M_earth and a true mass of ~5 M_earth, which would make it the least massive planet around a main-sequence star found to date. The planet is identified from its perturbations on an inner Neptune-mass transiting planet (GJ 436b), by pumping eccentricity and producing variations in the orbital inclination. Analysis of published radial velocity measurements indeed reveals a significant signal corresponding to an orbital period that is very close to the 2:1 mean motion resonance with the inner planet. The near-grazing nature of the transit makes it extremely sensitive to small changes in the inclination.Comment: 5 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    Phase curves of WASP-33b and HD 149026b and a New Correlation Between Phase Curve Offset and Irradiation Temperature

    Get PDF
    We present new 3.6 and 4.5 μm\mu m Spitzer phase curves for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As part of this analysis, we develop a new variant of pixel level decorrelation that is effective at removing intrapixel sensitivity variations for long observations (>10 hours) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we measure eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 μm\mu m and 4.5 μm\mu m. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo and an unusually high recirculation efficiency. We also compare our results to predictions from general circulation models, and find that while neither are a good match to the data, the discrepancies for HD 149026b are especially large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, heat transport efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature--the former drops with increasing temperature until around 3400 K, and rises thereafter. Although some aspects of this trend are mirrored in the circulation models, there are notable differences that provide important clues for future modeling efforts

    3.6 and 4.5 μm Phase Curves and Evidence for Non-equilibrium Chemistry in the Atmosphere of Extrasolar Planet HD 189733b

    Get PDF
    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 μm, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% ± 0.0061% in the 3.6 μm band and 0.0982% ± 0.0089% in the 4.5 μm band, corresponding to brightness temperature contrasts of 503 ± 21 K and 264 ± 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 μm, and we present new evidence indicating that the flux minimum observed in the 8 μm is likely caused by an overshooting effect in the 8 μm array. We obtain improved estimates for HD 189733b's dayside planet-star flux ratio of 0.1466% ± 0.0040% in the 3.6 μm band and 0.1787% ± 0.0038% in the 4.5 μm band, corresponding to brightness temperatures of 1328 ± 11 K and 1192 ± 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from Burrows et al. and conclude that fits to this planet's dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733b's 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planet's transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator

    A Spitzer Transmission Spectrum for the Exoplanet GJ 436b, Evidence for Stellar Variability, and Constraints on Dayside Flux Variations

    Get PDF
    In this paper we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 Feb 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7 sigma significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planet's atmosphere as the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the star's spin axis is tilted with respect to our line of sight, and that the planet's orbit is therefore likely to be misaligned. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. Our measured 8 micron secondary eclipse depths are consistent with a constant value, and we place a 1 sigma upper limit of 17% on changes in the planet's dayside flux in this band. Averaging over the eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the secondary eclipse depth. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris, and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. [ABRIDGED]Comment: 26 pages, 18 figures, 7 tables in emulateapj format. Accepted for publication in Ap

    Secondary Eclipse Photometry of WASP-4b with Warm Spitzer

    Get PDF
    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. (2010). We also find no evidence for an offset in the timing of the secondary eclipse and place a 2 sigma upper limit on |ecos(omega)| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.Comment: 8 pages, 7 figures (some in color), accepted for publication in Ap

    Spitzer Secondary Eclipses of the Dense, Modestly-irradiated, Giant Exoplanet HAT-P-20b Using Pixel-Level Decorrelation

    Get PDF
    HAT-P-20b is a giant exoplanet that orbits a metal-rich star. The planet itself has a high total density, suggesting that it may also have a high metallicity in its atmosphere. We analyze two eclipses of the planet in each of the 3.6- and 4.5 micron bands of Warm Spitzer. These data exhibit intra-pixel detector sensitivity fluctuations that were resistant to traditional decorrelation methods. We have developed a simple, powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without explicitly using - or even measuring - the fluctuations in the apparent position of the stellar image. We illustrate and validate PLD using synthetic and real data, and comparing the results to previous analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry, even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134 +/-29K, indicating inefficient longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient evidence for variability in the 4.5 micron band that the eclipses should be monitored at that wavelength by Spitzer, and this planet should be a high priority for JWST spectroscopy. All four eclipses occur about 35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and transit times with extant RV data yields e(cos{omega}) = 0.01352 (+0.00054, -0.00057), and establishes the small eccentricity of the orbit to high statistical confidence. Given the existence of a bound stellar companion, HAT-P-20b is another excellent candidate for orbital evolution via Kozai migration or other three-body mechanism.Comment: version published in ApJ, minor text and figure revision

    The atmospheres of the hot-Jupiters Kepler-5b and Kepler-6b observed during occultations with Warm-Spitzer and Kepler

    Get PDF
    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near infrared with Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broad band emergent spectra for individual planets. For both targets, the occultations are detected at 3 sigma level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T=1930+/-100K and T=1660+/-120K for Kepler-5b and Kepler-6b respectively. We measure optical geometric albedos A_g in the Kepler bandpass and find A_g=0.12+/-0.04 for Kepler-5b and A_g=0.11+/-0.04 for Kepler-6b leading to an upper limit for the Bond albedo of A_B < 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the night side of these planets. The data for Kepler-5b favor a model without a temperature inversion, whereas for Kepler-6b they do not allow distinguishing between models with and without inversion.Comment: 26 pages, 18 figures, 3 tables, submitted to Ap

    Low False-Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations

    Get PDF
    (Abridged) NASA's Kepler mission has provided several thousand transiting planet candidates, yet only a small subset have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongst the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital and planetary parameter space, and we observe their transits with Spitzer at 4.5 microns. We use these observations to measures the candidate's transit depths and infrared magnitudes. A bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false-positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5-40%, depending on the KOIs. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3 sigma. This observational result, which uses the achromatic property of planetary transit signals that is not investigated by the Kepler observations, provides an independent indication that Kepler's false positive rate is low.Comment: 33 pages, 16 figures, 3 tables; accepted for publication in ApJ on February 7, 201
    corecore