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ABSTRACT

HAT-P-20b is a giant metal-rich exoplanet orbiting a metal-rich star. We analyze two secondary
eclipses of the planet in each of the 3.6- and 4.5µm bands of Warm Spitzer. We have developed a simple,
powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which
we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without
explicitly using - or even measuring - the fluctuations in the apparent position of the stellar image.
We illustrate and validate PLD using synthetic and real data, and comparing the results to previous
analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry,
even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis
of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134± 29K, indicating inefficient
longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient
evidence for variability in the 4.5µm band that the eclipses should be monitored at that wavelength by
Spitzer, and this planet should be a high priority for JWST spectroscopy. All four eclipses occur about
35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and
transit times with extant RV data yields e cosω = 0.01352+0.00054

−0.00057, and establishes the small eccentricity
of the orbit to high statistical confidence. HAT-P-20b is another excellent candidate for orbital evolution
via Kozai migration or other three-body mechanism.

1. introduction

The transiting exoplanet HAT-P-20b occupies a unique
niche in parameter space, being a massive (M = 7.246 ±
0.187MJ), high density planet (ρ = 13.8 ± 1.5 g cm−3),
orbiting a relatively small metal-rich star (R = 0.69 ±
0.02R�, [Fe/H] = +0.35 ± 0.08 Bakos et al. 2011). The
high metallicity of the star, and the radius of the massive
planet being smaller than Jupiter (Rp = 0.867± 0.033RJ ,
Bakos et al. 2011), suggest that the planet is metal-rich.
Moreover, HAT-P-20b is only moderately irradiated, with
a predicted equilibrium temperature of 970K (for zero
albedo and uniform longitudinal distribution of heat).

Spitzer observations of exoplanets like HAT-P-20b, with
equilibrium temperatures below 1000K, are targets of a
new Spitzer program (H. Knutson, P.I.) to search for a
plausible inverse relation between planetary mass and at-
mospheric metallicity. That relation should be especially
obvious at temperatures where methane forms (/ 1000K),
because methane abundance can be supressed by CO for-
mation when the atmospheric metallicity is very high

(Moses et al. 2013). We therefore anticipate the possibil-
ity of strong molecular absorption, due to either methane
or CO, in cool giant exoplanets like HAT-P-20b. Indeed,
Spitzer eclipses of the moderately irradiated exo-Neptune
GJ 436b are interpreted as exhibiting strong CO absorp-
tion, and a large depletion of methane (Stevenson et al.
2010; Lanotte et al. 2014).

Although we seek the molecular absorption spectra of
giant transiting planets, it has been argued that the emer-
gent spectra of some hot Jupiters - such as the strongly-
irradiated WASP-12b - are consistent with that of a black-
body (Crossfield et al. 2012). However, Stevenson et al.
(2014) concludes that the spectrum of WASP-12b devi-
ates decisively from a blackbody. Recently, Hansen et
al. (2014) have suggested that the dayside spectra of all
close-in giant transiting planets are adequately described
as blackbodies, based on their inferred level of systematic
error in the Spitzer analyses. Irrespective of this debate,
there are already multiple examples in the literature where
the emergent dayside spectra of hot Jupiters are consistent
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with that of a blackbody. For example, Corot-1b (Deming
et al. 2011), WASP-48b and HAT-P-23b (O’Rourke et al.
2014) resemble blackbodies. However, there are also plan-
ets whose emergent spectrum is clearly not a blackbody,
WASP-43b being the most recent example (Kreidberg et
al. 2014).

Our observations of HAT-P-20b have two motivations.
First, we want to detect molecular absorption or emission
in the non-blackbody spectrum of a moderately-irradiated
metal-rich giant exoplanet. Second, we aspire to improve
techniques for hot Jupiter photometry, by reducing the
level of systematic error in Warm Spitzer analyses. To
that end, we have developed a simple, powerful, and radi-
cally different new methodology for producing high quality
photometry from Spitzer images at 3.6 and 4.5µm. In this
paper, we report a two-point photometric ‘spectrum’ of
HAT-P-20b, based on two eclipses observed in each Warm
Spitzer band, and we discuss the implications for the at-
mosphere and orbit of the planet.

This paper is organized as follows. In Sec. 2, we intro-
duce our new pixel-level decorrelation (PLD) technique
for analyses of Spitzer data, and we argue for its advan-
tages over traditional methods. Sec. 3 explains how we
implement PLD in practice, and Sec. 4 validates it by ap-
plying it to synthetic data where the underlying transit,
eclipse, and phase curve amplitudes are known. Sec. 5
describes application of PLD to real data for several ex-
oplanetary systems previously analyzed using traditional
methods, and we compare our PLD results and error lev-
els to those previous analyses. Having thus validated PLD
as an effective tool for Spitzer analyses, we apply it to
HAT-P-20b. Sec. 6 describes our new observations, and
the initial processing of the data. Sec. 7 derives the PLD
eclipse amplitudes of HAT-P-20b, and Secs. 8 and 9 dis-
cuss the implications of our results for the atmosphere and
orbit of HAT-P-20b, respectively. Sec. 10 summarizes our
conclusions.

2. the zen of intra-pixel decorrelation

We here motivate and describe our new PLD technique,
which differs fundamentally from all other methods used
to analyze Spitzer data to date.

Photometry of IRAC images at 3.6 and 4.5µm has long
been known (Charbonneau et al. 2005) to exhibit a sys-
tematic effect due to intra-pixel sensitivity variations (In-
galls et al. 2012). When coupled with pointing jitter, the
intra-pixel sensitivity variations produce intensity fluctu-
ations that must be removed from photometry in order to
detect the subtle eclipses of exoplanets. Current methods
to correct Spitzer photometry are based on defining and
removing a correlation between apparent intensity fluctu-
ations of the host star, and its physical position on the
detector as determined by finding the centroid of the stel-
lar PSF. The earliest such decorrelations (e.g., Charbon-
neau et al. 2005; Knutson et al. 2008; Machalek et al. 2008)
modeled the intensity fluctuations as polynomial (typically
quadratic) functions of the Y-coordinate, sometimes with
a weaker (e.g., linear) dependence on the X-coordinate.
Polynomial decorrelations are still used (e.g., Shporer et
al. 2014), but methods have evolved to include very pow-
erful implementations such as Bi-Linear Interpolated Sub-
pixel Sensitivity (BLISS) mapping (Stevenson et al. 2012),

and novel variants such as a spatial weighting-function ap-
proach (Ballard et al. 2010; Cowan et al. 2012), and modi-
fications thereof (Lewis et al. 2013; Zellem et al. 2014; Lan-
otte et al. 2014). These decorrelations have been largely,
but not entirely successful. Their success is illustrated by
very precise observations such as the transits of GJ1214b
(Fraine et al. 2013; Gillon et al. 2014). However, their
limitation is indicated by residual red noise that is often
found, especially in the 3.6µm band where the intra-pixel
effect is strongest.

All current methods to remove Spitzer’s intra-pixel ef-
fect rely on defining a relationship between photometric
fluctuations and the position of the stellar image on the
detector. However, PLD neither defines nor requires any
functional relation between intensity fluctuations and the
position of the stellar image. Although we determine the
position of the stellar image in order to measure its inten-
sity within a circular aperture (i.e., do photometry), we do
not use the image position per se to correct the intensity
fluctuations. We assert a zen-like irony: the best way to
correct the effect of fluctuations in image position does not
involve using the position of the image.

We point out that the position of the stellar image is a
secondary data product, derived from the intensities regis-
tered by the pixels of the detector. The intensities of indi-
vidual pixels are the primary data. Conventional methods
use the pixel intensities to define an image position via a
numerical process (e.g., determining center-of-light or fit-
ting a 2-D Gaussian). The centroid position of the star is
then related to intensity fluctuations by a second numeri-
cal process (e.g., BLISS mapping, or polynomial fits). In
defining the position-intensity relation, the star is implic-
itly treated as a point source, when in fact it has a width
comparable to the pixels it is traversing. PLD omits these
two intermediate numerical steps, and relates the fluctu-
ations in total intensity to the individual pixels directly,
using a simple, physically-motivated, linear expression, as
we now describe.

For most Spitzer secondary eclipse observations, the star
moves by less than one pixel over the entire time series.
Positional stability of Spitzer images has been greatly fa-
cilitated by reductions in pointing jitter (Grillmair et al.
2012), and reproducibility of target acquisition (Ingalls et
al. 2012). A relatively few pixels typically encapsulate
most of the information concerning the total brightness
and position of the stellar image. As the image moves (for
example) in the +Y direction, the pixel immediately above
the centroid receives a greater proportion of the total flux,
and the pixel immediately below the centroid receives less
of the total flux. The position of the image is thus encoded
in the relative intensities of the pixels. Hence, PLD uses
positional information implicitly, but not explicitly. We
consider a small group of pixels that contain the stellar
image, typically a 3 × 3-pixel square approximately cen-
tered on the star. Indexing the 2-dimensional grid of N
pixels using a single index, let the background-subtracted
intensity of pixel i at time t be denoted P t

i . The measured
brightness of the star, St, in a frame of data at time t can
be written as:

St = F(P t
1 , P

t
2 , P

t
3 , ...P

t
N ), (1)

where F is a generalized function. Because the PSF of
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the telescope is broader than an individual pixel, St varies
smoothly with the position of the image. In that physical
situation, F is continuous and differentiable, and we can
apply a Taylor series expansion to derive an expression for
the fluctuations in St as a function of the changes in P t

i .
For small fluctuations in image position, we can approxi-
mate the Taylor expansion using only the linear terms:

δSt =

N∑
i=1

∂F
∂P t

i

δP t
i , (2)

where the lower case δ indicates the fluctuations in St

caused only by the combination of image motion and spa-
tial inhomogeneities of the detector. To utilize Eq. (2) in
actual data analysis, we first normalize the pixel intensities
so that their sum is unity at each time step, thus:

P̂ t
i =

P t
i∑N

i=1 P
t
i

(3)

Note that the P̂ values do not contain the eclipse of the
planet, because astrophysical variations are removed by
the normalization. Now we include purely temporal vari-
ations in detector sensitivity, and the eclipse itself. Both
of these effects will be mutiplicative times δSt, and rep-
resented by factors close to one, that can be written as
1± ε(t) for the (small) temporal effects, and 1−DE(t) for
the eclipse, where D is the eclipse depth and E(t) is the
eclipse shape normalized to unit amplitude. Multiplying
Eq.(2) by these factors will produce cross-terms such as

DE(t)ciδP̂
t
i (see below for ci). The cross terms are second

order and can be neglected. For example, DE(t) ∼ 0.001

for the eclipses analyzed in this paper, and ciδP̂
t
i ∼ 0.004,

so their product (4 parts per million) is not significant to
the data analysis. To characterize and remove the intra-
pixel effect, while simultaneously solving for the amplitude
of the eclipse, and temporal baseline effects, we re-write
Eq.(2) as:

∆St =

N∑
i=1

ciP̂
t
i +DE(t) + ft+ gt2 + h, (4)

where the upper case ∆ indicates the total fluctuations
from all sources, ci represent the partial derivatives from
the Taylor expansion, and we added an offset constant (h).
We here represent the temporal variations (1± ε(t)) using
a quadratic function of time (ft + gt2). An exponential
function of time is also possible, and we explore that in
Secs. 5.1 & 7.1. We find that in practice the δP t

i values
from Eq. (2) can be replaced in Eq. (4) by the normalized

pixel values themselves (the P̂ t
i ). The P̂ t

i terms in Eq.(4)
relate the apparent fluctuations in stellar intensity to the
manner in which that intensity is distributed among the
detector pixels.

We obtain St (and thus ∆St) from a circular numeri-
cal aperture centered on the star. But St could also be
derived from the sum of pixels in Eq.(3), and we discuss
this option in Sec. 5.4. Note also, that Eq. (3) guarantees

that the P̂ t
i values are not trivially related to the ∆St.

Moreover, there is nothing that limits PLD to using a lin-
ear expansion in Eqs. (2) & (4). Non-linear terms from the

Taylor expansion (e.g., quadratic in one or more P̂ t
i ) could

be included if the physical situation warrants, i.e. if image
motion is large. Figure 1 illustrates the principle of PLD
by graphically showing the terms that add to Eq. 4.

PLD has several major advantages over the usual
method of deriving an image position and expressing ∆St

as some function of the image coordinates. The advantages
of PLD are:

• Flat-fielding inaccuracies (Carey et al. 2012) are au-
tomatically and efficiently corrected by the ci coef-
ficients. When the image moves and a greater pro-
portion of the stellar photons fall on a given (mis-
calibrated) pixel, the integrated intensity could fluc-
tuate in a manner poorly represented by functions
adopted in conventional intra-pixel decorrelations.
For example, if a single pixel has a very discordant
response, the spatial effect could be sufficiently lo-
calized as to require a high order polynomial to
model it, and therefore require multiple coefficients
for an effect caused by a single pixel. However, the
PLD coefficients ci each represent individual pixels
one-to-one, so an efficient flat-fielding correction is
a natural by-product of the intra-pixel removal.

• PLD has a sound analytic basis: although the Tay-
lor expansion (1) is only approximate in practice,
it is rigorous for infinitesimal displacements of the
image. Moreover, the PLD coefficients usually re-
flect the obvious physical importance of any given
pixel. For example, small coefficients naturally oc-
cur for pixels that contribute little to the total
flux. MCMC posterior distributions can be used
to eliminate unnecessary or redundant pixels. Pix-
els whose distributions of ci are consistent with zero
are not affecting the solution, and can be dropped.
Note that correlations between the ci coefficients
are physically expected, and are not a flaw in the
procedure. As the image moves, the amount of stel-
lar flux falling in a steep sensitivity gradient of one
pixel can be accompanied by an opposite effect for a
neighboring pixel. However, we find no correlations
between the ci and the eclipse depth.

• PLD is a very effective technique, capable of remov-
ing red noise that frustrates other methods. Red
noise in Spitzer photometry is not noise per se, it is
the response of the detector pixels to time-varying
illumination. PLD is successful because it includes
all pixels having a significant contribution to the
flux, and it allows the pixels themselves to define
the red ‘noise’ fluctuations. Also, our solutions of
Eq. (4) do not merely find the best solution on the
time scale of a single exposure. Rather, we explic-
itly consider longer time scales when finding the
best solution, as explained in Sec. 3.3.

• PLD is computationally fast; it is hard to envision a
faster method when using MCMC. The P̂ t

i are com-
puted prior to initializing the MCMC, and they are
used with simple linear coefficients. There is no
weighting function to calculate, and no spline inter-
polating (as in BLISS mapping). Calculation of the
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eclipse model is the most computationally-intensive
portion of PLD, but that calculation is also used by
all other methods.

3. pld fitting and data binning

Binning the data in time to various degrees is an integral
part of our PLD fitting method, for both mathematical
and physical reasons. We bin both the aperture photom-
etry and the P̂ t

i values, immediately after calculating the
photometry.

3.1. Mathematical Motivation for Binning

There is a purely mathematical reason for binning the
data. The coefficients (ci in Eq. 4) of the best fit are a
function of the bin size. A similar statement is true for
all methods that solve for the intrapixel effect in Spitzer
data, because it’s a general property of least-squares solu-
tions, not of the method to find the solution, and not even
specific to Spitzer data.

The general problem of parametric estimation in the
presence of noise has been extensively treated in the sta-
tistical literature (e.g., Deming 1943; Fuller 1987). In the
simplest case, independent of Spitzer, a dependent variable
(Y) varies as a linear function of an independent variable
(X). When the measurement errors are confined to Y, the
solution having the minimum reduced χ2 does not depend
on the bin size, if the binning is done with proper weight-
ing by the inverse of the variance. However, independence
of the solution on bin size does not hold in general. It
specifically does not hold when X also contains measure-
ment errors. In the Spitzer case, the X variables are either
the position of the image for conventional decorrelations,
or the P̂ t

i for PLD. Since those both contain measurement
errors, the best fits to Spitzer data are intrinsically a func-
tion of bin size. That is true even if the errors are purely
Gaussian white noise.

Binning both the photometry and the pixel values as
a function of time, our PLD regression will find a linear
solution to Eq.(4) that minimizes the χ2 for the binned
data, but not for the unbinned data. We find that solu-
tions based on binned data often exhibit less noise on the
time scale of the eclipse, but always have slightly greater
point-to-point scatter when those coefficients are applied
to unbinned data, versus a solution of Eq.(4) obtained on
the unbinned data directly. Essentially, we accept greater
scatter on short time scales, as a trade-off for minimizing
the noise on longer time scales, as we explain in detail be-
low. Nevertheless, Eq.(4) is sufficiently effective that our
solutions often exhibit less scatter than traditional meth-
ods on all time scales.

3.2. Physical Motivation for Binning

The physical reason for binning the data is related to the
properties of the Spitzer telescope. It exhibits pointing jit-
ter on a wide range of time scales. Besides the well known
40-minute oscillation due to the battery heater, there are
also short-term fluctuations from a few to tens of seconds.
For example, the frames within a given sub-array data
cube at a 2-second cadence exhibit pointing variations that
are obvious in our photometry of both real and synthetic
data. Binning averages out the effect of short term spatial

fluctuations, and permits the solution to focus on removing
the longer-term variations on the time scale of the planet’s
eclipse. Binning is also helpful because the pixels at the
edge of the stellar PSF have relatively low flux levels, and
binning helps to improve the precision of the P̂ t

i that form
the basis vectors of the PLD decorrelation.

Some consequences of binning should be mentioned.
Binning can in principle distort the eclipse curve, and neg-
atively affect the solution (Kipping 2010). However, the
bin widths we use are not sufficiently long in temporal
span to produce distortion of the eclipse curve. We check
our solutions and vary the binning to be sure that the de-
rived eclipse depth does not vary systematically with bin
size. A positive effect of binning is that it helps to reduce
red noise because the binned data are more representative
of lower temporal frequencies than are the unbinned data.
We avoid binning the data to the degree that would cause
the number of data points to be comparable to the number
of coefficients that comprise the solution (in other words,
we maintain a high degree of freedom).

3.3. A Broad-Bandwidth Solution

We here describe specifically how we select the best PLD
fit to a given Spitzer eclipse, and determine the errors.
We perform aperture photometry using both constant and
variable radius apertures. Prior to the binning, we solve
Eq.(4) using matrix inversion repeated over a trial grid of
different central phases, to select the best-fit eclipse phase.
(The matrix inversion finds the minimum χ2, so any other
procedure to minimize χ2 would be equivalent.) Fixing
the eclipse phase to that initial best-fit value, we vary the
bin size and again solve Eq.(4) for all combinations of bin
sizes and photometry data sets.

We use binning in two different ways. First, there is the
binning of the photometry and the P̂ t

i values as described
above. For each eclipse, we consider all combinations of
bin size, photometric aperture type and size, and centroid-
ing method. We explore bin sizes of 1 exposure per bin,
and 2 to 258 exposures per bin, in increments of 4 (1, 2, 6,
10, etc.). We use 11 apertures, and a variable radius aper-
ture with 11 different increments added (as in Beatty et al.
2014), and two centroiding methods (2-D Gaussian fitting
and center-of-light). At each combination, we apply the ci
coefficients to the unbinned data, and calculate residuals
(data minus fit). We then explore the noise properties of
those residuals using a second binning process. We denote
the standard deviation of the unbinned residuals as σ(1).
We bin those residuals over 2, 4, 8, etc. points, increasing
the ‘residual-bin’ size by a factor of two, stopping when
the number of points after residual-binning is ≤ 16. For
each residual-bin size N , we calculate the standard devi-
ation of those binned residuals σ(N) and the χ2 of the
σ(N) compared to a line of slope −0.5 that is forced to
pass through σ(1). The fit (bin size, aperture, centroiding
method) that minimizes the χ2 of this line is our adopted
PLD regression solution.

Our fitting criterion is a generalization of previous
Spitzer decorrelation work. To our knowledge, all previ-
ous Spitzer decorrelations find a best fit to unbinned data,
and accept the consequences for the residuals on longer
time scales. Our PLD fitting exploits the mathematical
and physical reality that the best fit is a function of the
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time scale, i.e. the degree to which the data are binned.
By adopting a grid of residual-bin sizes, we are considering
a range of time scales equally spaced in the logarithm of
time. Minimizing the χ2 of our σ(N) compared to a line
of slope −0.5 chooses the fit that minimizes the noise over
that range of time scales, i.e., we adopt a fit with broad
bandwidth characteristics. That, together with the intrin-
sic effectiveness of Eq.(4), allows us to greatly reduce red
noise in our solutions.

After finding the best solution as described above, we
use that regression solution to initialize a Markov Chain
Monte Carlo (MCMC) procedure (Ford 2005) that ex-
plores parameter space, operating on the binned data
at the degree of binning chosen by the regression. The
MCMC varies all of the eclipse parameters, including
the central phase. Our MCMC formulation uses the
Metropolis-Hastings algorithm with Gibbs sampling, and
our code automatically adjusts the step size for each pa-
rameter to converge to an acceptance rate of 0.45. Our
chains converge and mix very quickly, because the regres-
sion solution finds the best-fit values of the ci at the out-
set. We confirm good convergence and mixing (for all of
the eclipses analyzed in this paper) by comparing three in-
dependent chains, each of 106 steps. The MCMC is some-
times able to find a slightly better solution than the re-
gression, but the difference is never physically significant.
Instead, the primary purpose of the MCMC is to determine
the errors and to test for correlations and degeneracies.

For each planet (real or synthetic) where we have ap-
plied PLD, we list the properties of the best-fit solution,
including the bin size used, in Table 1.

4. tests of pld using synthetic data

We have tested PLD using both synthetic and real data.
This Section describes the tests using synthetic data. Sec.
4.1 briefly summarizes how the synthetic data are pro-
duced, and Secs. 4.2 and 4.3 test PLD on two variants of
the synthetic data.

4.1. Synthetic IRAC data

We generated and analyzed synthetic BCD files for 3.6
and 4.5µm, based on a new capability developed at the
Spitzer Science Center (by. J. Ingalls & S. Carey). Some
of these synthetic data for WASP-52 were initially pro-
duced for the IRAC Data Challenge Workshop14 held in
association with the 224th meeting of the American Astro-
nomical Society. Details of the synthetic data generation
will be published by J. Ingalls and S. Carey, but we here
summarize the essential features.

The synthetic data utilize the current best realizations
of Spitzer/IRAC’s pixel sensitivity map and the telescope
pointing fluctuations. The intra-pixel effect is explicitly
modeled, but pixel-to-pixel variations in responsitivity due
to flat-fielding errors are not currently included. The inter-
action between the telescope’s point spread function (PSF)
and the modeled intra-pixel detector sensitivity structure
is calculated for each Fowler sample of each simulated
frame. The telescope pointing is simulated at 1 msec time
resolution, and includes fluctuations due to cycling of a
heater used to stabilize a battery in the pointing system,

and a settling drift that occurs for about 30 minutes at
the start of each AOR.

The simulated observation of WASP-52b used approxi-
mately 1.3 planetary orbits (53 hours total), divided into
12-hour AORs. The telescope PCRS re-acquistion was
simulated for each AOR. The total data comprise 95,104
exposures of 2 seconds each, divided into 1486 data cubes
of dimension 32 × 32 × 64. Detector read noise and stel-
lar photon noise was added to each frame, but we also
produced and analyzed a noiseless version, described im-
mediately below. These data also contain two spike-like
fluctuations in the noise-pixel parameter, caused by high
reequency (10 Hz) pointing oscillations that smeared out
the telescope PSF when integrated over 2 seconds. These
were included to challenge the participants in the IRAC
Workshop.

4.2. Testing PLD Using Noiseless Data at 3.6 Microns

A major advantage of synthetic data is that we can turn
off the noise, and examine the nature of the decorrelation
process with maximum clarity. We generated synthetic
noiseless data for WASP-52 at 3.6µm, where the intra-
pixel effect is strongest. The planet was also turned off
in this version of the data, so that we can isolate effects
of the detector. We performed aperture photometry (on
these data as well as all of the real data in this paper) using
both apertures with constant radii from 1.6 to 3.5 pixels
in increments of 0.2 pixels, and variable-radius apertures
based on the noise-pixel formulation described by Lewis
et al. (2013). The variable-radius apertures include a con-
stant added to the noise pixel radius (defined by Beatty
et al. 2014,

√
β, their Eq. 1), which varied from zero to

two pixels. We located the centroid of the stellar image
using both an azimuthially symmetric 2-D Gaussian fit, as
well as an intensity-weighted center-of-light calculation in
X and Y. We decorrelated the intra-pixel effect in these
data using both PLD and polynomial fits to the X and Y
positions of the image centroid.

We explored many possible combinations of constant-
radius vs. variable-radius apertures, and centroiding
(Gaussian fitting vs. center-of-light), in order to draw ro-
bust conclusions. Centroiding affects a conventional decor-
relation in two ways. First, it determines where the pho-
tometry aperture is placed, thus impacting the photome-
try. Second, it determines the X- and Y-positions of the
image that are used in the decorrelation. For the conven-
tional polynomial decorrelation, we found the best results
using a variable-radius aperture and center-of-light cen-
troiding. The PLD solutions do not use the image posi-
tions directly, and we found for this case that the PLD
results were relatively insensitive to choices of centroiding
and photometric apertures. (The real data we analyze ex-
hibit greater sensitivity to those choices, as described in
Sec. 5.)

Some results from this test are illustrated in Figure 2.
The top panel shows the photometry for the noiseless data
prior to decorrelation. The second panel overlays (in red)
the fitted function from the PLD regression onto the pho-
tometry. The two lowest panels show the residuals from
the best fit for both the PLD and polynomial cases. Since
there is no noise and no planet, all of the structure in

14 http:conference.ipac.caltech.edu/iracaas224/data-challenge
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the photometry is due to intra-pixel detector sensitivity
variations. Neither technique removes all of the structure
in the photometry, as evidenced by non-zero residuals in
the two lowest panels of Figure 2. Certainly the detec-
tor sensitivity structure is not precisely quadratic, so the
polynomial decorrelation is substantially imperfect. As for
PLD, Eqs. (2) & (4) are accurate only in the limit of small
changes in spatial position, and these test data exhibit rel-
atively large fluctuations in position (up to 0.72 pixels in
Y and 0.36 pixels in X). Nevertheless, the standard devi-
ation of the PLD residuals (473 parts-per-million, ppm) is
sufficiently small that it would not significantly limit most
exoplanet observations, if combined in quadrature with
photon noise. For reference, the photon noise of WASP-
8, HAT-P-20, and WASP-14, in a 2-second frame time is
2150, 2500, and 2612 ppm, respectively. The standard de-
viation of the residuals from the polynomial fit in Figure 2
is 946 ppm, twice the PLD value. Using different centroid-
ing and apertures, the polynomial decorrelation performs
even more poorly compared to the PLD result, that is in-
sensitive to the methodology of the photometry. Neither
technique deals well with the noise-pixel spike due to PSF
variation, but such spikes are rare in real data.

We used a quadratic polynomial for Figure 2 because
that order is commonly used in real Spitzer decorrelations
(e.g., Deming et al. 2011; Todorov et al. 2012, 2013). How-
ever, that’s arguably an unfair comparison because the
quadratic decorrelation has only four position-dependent
parameters, vs. nine for PLD. Therefore we also per-
formed solutions using only the five brightest pixels in
PLD, and comparing to polynomial decorrelations that
are third and fourth order in both X and Y . For the
third and fourth order polynomials (6 and 8 parameters
respectively), the residual error level is 601 and 553 ppm,
respectively, whereas the 5-pixel PLD residual error is 511
ppm. Hence PLD is a more efficient decorrelation method
than polynomials. Nevertheless, we note that polynomial
decorrelations continue to be useful, for example in the
recent re-analysis of GJ 436b (Lanotte et al. 2014). More-
over, in Sec. 7.2 of this paper we describe a sanity check
of our HAT-P-20 results using a polynomial decorrelation.

The Figure 2 data exhibit much larger image motion
than occurs in many, but not all, Spitzer eclipse obser-
vations. We examined how the amplitude of residuals in
Figure 2 depends on the magnitude of the image motion.
For image motion less than 0.03 pixels, the standard de-
viation of the residuals is 163 ppm, increasing smoothly
to 461 ppm at 0.2 pixels of image motion. Beyond 0.2
pixels of image motion, the residual envelope varies less
smoothly, but reaches 579 ppm at 0.3 pixels (not illus-
trated). Less than ∼ 0.2 pixels of image motion is the
region where our current version of PLD achieves opti-
mum performance, but it still exceeds the performance of
polynomial decorrelations even for image motion as large
as 0.7 pixels.

We conclude that PLD produces a good fit to the
intra-pixel detector structure, at least twice as good as
a quadratic polynomial decorrelation, which is still com-
monly used in Spitzer analyses. However, in actual prac-
tice that factor of two will be significantly diluted by pho-
ton noise. On the other hand, PLD is minimally sensitive
to the choice of centroiding and construction of the nu-

merical aperture used in the photometry. (In Sec. 5.4 we
show a PLD result that does not even require measuring
the position of the star.)

4.3. Testing PLD with Synthetic Data for WASP-52b at
4.5 Microns

We also analyzed synthetic data containing both the
planet (WASP-52b) as well as detector read noise and
stellar photon noise. These data at 4.5 microns were an-
alyzed by the community in the IRAC Workshop men-
tioned above, except that the noise model is now revised
to properly account for the photon noise of previous Fowler
samples. They comprise the same number of 2-second ex-
posures as the noiseless data described above, covering
a transit of the planet and two secondary eclipses. The
planet in these data also exhibits a sinusoidal phase curve
effect. We know in advance that the phase curve has a
minimum at the center of transit and a maximum at the
center of secondary eclipse. We also know that the syn-
thetic transit occurs at phase 0.0 and uses no limb dark-
ening. The eclipse is specified to occur exactly at phase
0.5, but the three amplitudes (transit and eclipse depth,
and phase curve amplitude) are unknown.

We performed photometry on these data using a similar
procedure as for the noiseless data, using both constant-
radius and variable-radius apertures. In this case, we
decorrelate the photometry using only PLD, and we com-
pare the retrieved amplitudes to their input values in order
to confirm that PLD is a valid method for decorrelating
Spitzer data. Our fitting procedure is explained in Sec. 3.3.
Table 1 lists the fitting parameters for these synthetic data,
and the retrieved amplitudes in comparison to the known
values.

Figure 3 shows the photometry for WASP-52b prior
to decorrelation (top panel), as well as the decorrelated
binned data with best-fit orbital phase/transit/eclipse
curve, and the residuals from the best binned fit. The
retrieved amplitudes for the eclipse and transit parame-
ters (Table 1) are in excellent agreement with the input
values. Our retrieved eclipse depth differs from the in-
put value by 0.2σ, and the retrieved transit depth differs
by 1.4σ, both consistent with random noise. However,
our retrieved phase curve amplitude differs from the input
value by 3σ. Our posterior distributions are very close to
Gaussians, so that difference is very unlikely to be due to
random error. The total range of image motion in these
synthetic data exceeds 0.7 pixels, whereas Eq.(2) is only
precise in the limit of small image motion. The real data
we analyze all have less than a third as much image mo-
tion (see Table 2), and (as we show below) PLD produces
robust results for the real eclipses. We conclude that PLD
is a valid method for analyzing Spitzer exoplanet eclipse
and transit data, but that it may require modification (e.g.
adding higher order terms to Eqs. 2 & 4) in order to ana-
lyze phase curve data.

5. testing pld with real data

We have tested PLD with five sets of real data: GJ 436
(Ballard et al. 2010), CoRoT-2b (Deming et al. 2011),
WASP-14b (Blecic et al. 2013), WASP-8b (Cubillos et al.
2013), and WASP-12b (Cowan et al. 2012; Stevenson et al.
2014). These data were chosen to represent a wide range
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of analysis situations. Although the purpose of these tests
is primarily to validate PLD, we also obtain new astro-
physical information, specifically a revised 3.6µm eclipse
depth for HAT-P-8b (Sec. 5.4), and recovery of a previous
intractable eclipse of WASP-12b (Sec. 5.5).

The GJ 436 data were originally used to search for an
additional planet (Ballard et al. 2010), and they contain no
transits or eclipses. CoRoT-2b was observed at the start
of Spitzer’s extended warm mission and analyzed using the
polynomial method (Deming et al. 2011). WASP-14b (Ble-
cic et al. 2013) and WASP-8b (Cubillos et al. 2013) were
both analyzed quite recently, and used the BLISS method
(Stevenson et al. 2012). WASP-8b at 3.6µm was a chal-
lenging data set, which exhibited significant red noise in
the normalized light curve (Cubillos et al. 2013). Cowan
et al. (2012) found that the WASP-12b eclipse we analyze
was especially difficult to fit, and they omitted that eclipse
from their results, as did Stevenson et al. (2014). We thus
challenge PLD with both variety and difficulty. Observa-
tional parameters for these five data sets are summarized
in Table 2.

5.1. Testing PLD With Real Data: PLD vs. a Weighting
Function

Our initial use of PLD showed immediately that it was
a powerful technique. We therefore worried that it might
be able to re-shape the data and produce an eclipse at
any arbitrary orbital phase, even if no real eclipse was
present. We alleviated this concern by applying PLD to
the contiguous 33-hour time series data for GJ 436, used
by Ballard et al. (2010) to introduce the weighting func-
tion method, and search for transits of a possible GJ 436c
planet. These data contain no eclipses or transits, as Bal-
lard et al. (2010) discuss.

The GJ 436 data comprise 488960 images (7640 data
cubes each containing 64 frames). Since there are so many
images with short exposure times (0.1 seconds), binning
the data for the decorrelation is especially appropriate.
Our fit procedure (Sec. 3.3) selects bins of 392 exposures
(about 51 seconds of real time) for the decorrelation. Our
solution quickly revealed a sharp transient rise in intensity
over the first ∼ 30 to 60 minutes of the time series. Since
this sharp increase is not adequately reproduced by the
quadratic time dependence in our Eq.(4), we used an ex-
ponential time ramp, and we omitted the first 36 minutes
of data that showed the greatest ramp effect.

In this case, there is no eclipse or transit, and the best-
fit eclipse depths are consistent with zero. The central
phase can therefore take any value and still produce an
equivalent fit. We use the regression solution to initialize
three independent MCMC chains. The MCMC chains use
the 392-point binning, and we find that the solution us-
ing that binning works well when applied to the unbinned
data. We apply the best-fit binned solution to the origi-
nal unbinned data to form residuals. We then re-bin those
residuals on various time scales, as described in Sec. 3.3,
to compare to Ballard et al. (2010), and to search for red
noise that may remain in the results. We find a scatter
of 65 ppm for 20-minute re-bins, shown in the top panel
of Figure 4. That compares well to Ballard et al. (2010),
who found 72 ppm on that time scale.

Applying our best-fit ci values and ramp parameters to

the unbinned GJ 436 data, we re-binned the residuals on
various time scales up to 216 exposures (about 2.5 hours),
and we find that the slope of log(σ) varies as log(N) with
a slope of −0.504, essentially identical to the −0.5 slope
expected for Poisson noise. The dependence of log(σ) on
log(N) is shown in the lower panel of Figure 4. The un-
binned residuals have a standard deviation of 0.00548, 3%
greater than the 0.0053 obtained by Ballard et al. (2010).
Because PLD operates on binned data, we do not fully
correct the effect of short term pointing fluctuations. But
the effective removal of red noise is a very acceptable trade
for a 3% increase in the short-term scatter.

We conclude that PLD passes this test in the sense that
it does not produce distortions in the data that would be
mistaken for real transits or eclipses. We further conclude
that the binned PLD solution effectively removes noise on
longer time scales, albeit at the price of a small increase
in noise on shorter time scales.

5.2. Testing PLD with Real Data: PLD vs. Polynomial
Decorrelation for CoRoT-2b

Eclipses of CoRoT-2b were among the first data ana-
lyzed from the Warm phase of the Spitzer mission (Deming
et al. 2011), and Hansen et al. (2014) mention CoRoT-2
as one of the most significant examples of deviation from
a blackbody. We have tested PLD on the 3.6µm eclipse
of CoRoT-2b reported by Deming et al. (2011). The orig-
inal analysis used the traditional polynomial method of
decorrelating, with a quadratic function in Y, and a linear
function in X. Our PLD result (not illustrated here) dif-
fers from the polynomial solution by less than 1σ in both
the depth and phase of the eclipse. Like all of our eclipse
fits in this paper, the characteristics and results of the fit
are summarized in Table 1. The PLD solution yields a
slope of log σ vs. log(N) of −0.495, statistically indistin-
gusihable from −0.5. The slope derived from the original
solution was not reported by Deming et al. (2011), but the
errors on the eclipse depth and phase for the original fit
are essentially the same as our current PLD solution. We
conclude that our PLD analysis matches the original fit
for this eclipse of CoRoT-2b, and again our PLD fit has
essentially no red noise.

5.3. Testing PLD with Real Data: PLD vs. BLISS
Mapping for WASP-14b

Turning to eclipse data that is more recent than CoRoT-
2, we re-analyze the 3.6µm eclipse of WASP-14b, as orig-
inally reported by Blecic et al. (2013). We choose WASP-
14b because it has a slightly eccentric orbit, and the phase
of the eclipse adds a useful dimension to the test. More-
over, the analysis described by Blecic et al. (2013) uses the
well-documented and effective BLISS method (Stevenson
et al. 2012) to correct for intra-pixel effects.

Our PLD decorrelation of WASP-14b used a 10-frame
binning (about one-sixth of a data cube, 20 seconds of
time), chosen by our PLD code to give the best red noise
removal. Blecic et al. (2013) found that the choice of tem-
poral ramp model was ambiguous, even using the Bayesian
Information Criterion. We use a linear ramp and achieve a
point-to-point scatter (standard deviation of the normal-
ized residuals, SDNR = 3054 ppm, Table 1). Our solution
improves on the SDNR quoted by Blecic et al. (2013), who



8 Deming et al.

found values near 3310 ppm (their Table 3). Like Blecic et
al. (2013), we omit the first 1100 of 13760 frames from the
solution. Following the regression solution of Eq.(4), we
run three MCMC chains, each having 106 steps, and we
check convergence by comparing these independent chains.
Our best-fit eclipse depth from the regression using the lin-
ear ramp is 1981 ± 66 ppm, where the error comes from
fitting a Gaussian to the posterior distribution. We ob-
tain essentially the same eclipse depth from the centroid
of the symmetric posterior distribution (1968 ppm). All of
our PLD posterior distributions for the depth and central
phase of all the eclipses we analyze are indistinguishable
from Gaussians. Our result (1981±66) ppm is in excellent
agreement with Blecic et al. (2013), who quote an eclipse
depth of 1900± 100 ppm. Using the eccentric orbit model
from Table 10 of Blecic et al. (2013), our best-fit central
phase is 0.4833±0.0004, compared to 0.4825±0.0003 from
Blecic et al. (2013), a 2σ difference. Both solutions con-
firm an eccentric orbit, and the central phases differ by a
marginally significant amount.

Figure 5 shows our best-fit PLD eclipse for WASP-14b
(top panel), re-binned to approximately the same time res-
olution used for Figure 8 of Blecic et al. (2013). Comparing
to the overplotted (gray) points from Blecic et al. (2013),
the PLD fit has fewer outliers, but is otherwise very simi-
lar. The middle panel shows the residuals from our fit, and
the lower panel shows the standard deviation of our residu-
als when binned on time scales from one frame (2 seconds)
to 211 frames (about 4100 seconds, including overhead).
The best-fit slope to the binned standard deviations on
the lower panel of Figure 5 (−0.494) is statistically indis-
tinguishable from Poisson noise (−0.5).

We conclude that our PLD analysis gives an eclipse
depth consistent with previous work, and again we find
that it attenuates red noise.

5.4. Testing PLD with Real Data: PLD vs. BLISS
Mapping for WASP-8b

Another challenging test of PLD is the 3.6µm eclipse of
WASP-8b reported by Cubillos et al. (2013). Those au-
thors utilized a BLISS technique to analyze this eclipse,
but found significant red noise remaining after the decor-
relation. Moreover, they found an eclipse depth that they
described as ‘anomalously high’, requiring some tension in
the astrophysics to account for it (Sec. 6 of their paper).
We have applied PLD to this eclipse, using a quadratic
temporal ramp as per the original analysis (Cubillos et al.
2013). Both the original, and our re-analysis, omit some
frames at the start of the time series, which is a normal
procedure for Spitzer analyses because there are transient
effects at the outset.

This star has a possibly bound M-dwarf companion
5 arcsec distant, and 2.1 magnitudes fainter in K-band
(Queloz et al. 2010; Cubillos et al. 2013). The compan-
ion lies outside of our photometry apertures, but can con-
tribute scattered and diffracted light. Appealing to sym-
metry, we measure the scattered and diffracted light from
WASP-8 itself, by placing a numerical aperture at the dis-
tance of the companion, but on the opposite side from
it. We calculate a correction factor using that fractional
light contribution together with the relative brightness of
WASP-8 and the companion. We apply the dilution cor-

rection to the eclipse depth after the decorrelation and
fitting process, not to the photometry. The correction we
calculate is 2.5%.

Our PLD fit is listed in Table 1, and shown in Figure 6.
We find a significantly cleaner fit to the eclipse with fewer
outliers compared to the original fit from Cubillos et al.
(2013) (compare black and gray points in the top panel
of Figure 6.) For WASP-8, as well as HAT-20 (discussed
below), eclipses shown graphically in our Figures do not
include correction for the companion stars, but that cor-
rection is included in the Table 1 eclipse depths. Our code
chooses 148 point binning (1.05 minutes) for our WASP-8
solution, i.e. slightly more than two Spitzer data cubes.
Applying that binned solution to our unbinned photome-
try, we find a SDNR= 5414 ppm, vs. 5377 from Cubillos
et al. (2013), a 0.7% difference. Our PLD solution yields
a slope of the binned-σ relation of −0.492, showing essen-
tially no red noise. Our eclipse depth is 906± 74 ppm, vs.
1130 ± 180 from Cubillos et al. (2013), a difference that
is 1.2 times their error. Cubillos et al. (2013) determine
the precision of their eclipse depth by accounting for cor-
relations in their residuals using the β parameter method
of Winn et al. (2008). Our error is based solely on our
MCMC posterior distribution for eclipse depth, since we
find no significant correlation in the residuals. Our eclipse
depth is consistent with the atmospheric models for the
planet shown in Figure 8 of Cubillos et al. (2013), and
reduces the tension with the astrophysics of the exoplan-
etary atmosphere that they discuss. Although we believe
that the eclipse depth from Cubillos et al. (2013) is too
large, we point out that their excellent error analysis en-
compasses our revised eclipse depth.

Sec. 2 mentions that it might be possible to obtain good
photometry from the sum of the 3×3-pixels in Eq.(3). As
the stellar image moves, the fraction of total light encap-
sulated by a 3× 3-pixel sum will vary, because the image
is moving but the pixels are stationary. It is reasonable to
hypothesize that Eq.(4) will correct for variable light loss,
just as it corrects for the intra-pixel sensitivity effect. If
so, it may be possible to obtain excellent eclipse results by
simply summing the pixels that contain the star, without
implementing conventional aperture photometry. Simple
sum-of-pixels photometry has distinct advantages. It ob-
viates all of the issues associated with the best way to
measure the stellar centroid, and other effects such as the
‘pixelization’ discussed by Stevenson et al. (2012) become
irrelevant.

Sum-of-pixels photometry is most appropriate for bright
stars, where the stellar intensity greatly exceeds the sky
background. For relatively faint stars where background
fluctuations contribute significantly to the noise, aperture
photometry remains desirable in order to optimize the
star-to-background ratio. For that reason, we continue
to rely on aperture photometry as a primary tool in our
PLD analyses, but we here test sum-of-pixels photome-
try for our brightest eclipsing system, WASP-8. Figure 7
compares the aperture photometry for WASP-8 (Figure 6)
with an independent decorrelation based on replacing the
aperture photometry with the denominator of Eq.(3), i.e.
using the sum of a 3 × 3-pixel box. The results are very
similar (Table 1); the eclipse depths differ by only 54 ppm,
less than 1σ, and the Gaussian-shaped posterior distribu-
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tions for eclipse depth (Figure 7) overlap significantly. The
slopes of the binned-sigma relations (Table 1) are both
indistinguishable from −0.5. Moreover, both results for
the eclipse depth are in good agreement with the modeled
spectrum shown by Cubillos et al. (2013), eliminating the
need to invoke unusual astrophysics.

We conclude that PLD permits robust photometry of
bright stars, without the need to measure the position of
the image.

5.5. Testing PLD with Real Data: WASP-12b

Cowan et al. (2012) studied the phase variation of ther-
mal emission from the very hot planet WASP-12b, and
their Spitzer data contained two eclipses of the planet
at 3.6µm. The first of these eclipses exhibited ‘highly
correlated residuals’ after their polynomial and weighting
function decorrelations (Cowan et al. 2012). Their depth
for this problematic eclipse was significantly less (0.0030
versus 0.0038) than a previously analysed eclipse of this
planet also at 3.6µm (Campo et al. 2011). Stevenson et
al. (2014) declined to include this eclipse in their recent
re-analysis of WASP-12b data. It therefore makes a chal-
lenging case for our PLD analysis.

Our best-fit solution (Figure 8) for this eclipse yields a
depth of 0.00363 ± 0.00018, consistent (at 1σ) with the
second eclipse in the data analyzed by Cowan et al. (2012)
(0.0038±0.0004). We also agree with other 3.6µm eclipses
analyzed by Campo et al. (2011) (0.00379 ± 0.00013),
and approximately with Stevenson et al. (2014) (0.0041±
0.0002, 0.0038±0.0002, and 0.0036±0.0002). Our best-fit
eclipse phase using the ephemeris from Chan et al. (2011)
is consistent with a circular orbit (Campo et al. 2011). Al-
though the eclipse depths quoted above do not include cor-
rection for the dilution by the companion star, that correc-
tion is included in Table 1. Since our average photometric
aperture is close to the 3.0 pixels used by Stevenson et al.
(2014), we adopt their dilution correction factor (1.1149).
Our corrected eclipse depth (4051 ± 202 ppm) agrees well
with the corrected average eclipse depth (3 eclipses) from
Stevenson et al. (2014) (4210± 110 ppm), and one eclipse
from Campo et al. (2011) (3790± 130 ppm).

Our result for this eclipse is compared to Cowan et al.
(2012) in Figure 8. Some important differences in method
are that Cowan et al. (2012) were fitting an entire orbit
of data, and they used a planetary phase function, but
no instrumental temporal ramp. We fit to only the data
between phases 0.4 and 0.6, and we use a linear temporal
ramp in Eq.(4). Those differences alone will tend to give us
better results for the eclipse, but our intent is primarily to
demonstrate a successful PLD analysis of this eclipse, and
only secondarily to compare to Cowan et al. (2012). The
fit from Cowan et al. (2012) exhibits a slope in the residu-
als during the eclipse, when the planet is not contributing.
Figure 8 shows that we find significantly less slope, as can
be seen particularly just prior to egress. We also find less
scatter, and very little correlation in the residuals. Our
slope for the binned residuals (bottom panel of Figure 8)
is −0.470. We conclude that PLD can successfully fit this
difficult eclipse data set.

6. observations of hat-p-20b, and initial data
processing

We now turn to HAT-P-20b (Bakos et al. 2011), and
apply PLD to this moderately-irradiated giant exoplanet.
We here analyze four eclipses that have not previously
been published.

We observed two eclipses of HAT-P-20b in each Warm
Spitzer band, in program 80219 (H. Knutson, P.I.), using
subarray mode. Times of the observations are given in Ta-
ble 3. Our analysis used the BCD data cubes, each having
64 frames of 2-second exposures. We find and correct dis-
crepant pixels due to energetic particle hits or other tran-
sient effects using a median filter applied to each pixel as a
function of time. We construct a 5-pixel running median of
each pixel’s intensity within a given 32×32×64-pixel data
cube, and we set 4σ-discrepant pixels to the median value.
We similarly apply a 4σ median filter to the photometry
and image positions internal to each data cube.

For both HAT-P-20b and the tests using synthetic and
archival data, we subtract a background level from each
frame of the 64-frame data cube, by fitting a histogram to
pixels in the four 6 × 6 × 64-pixel spatial corners of each
data cube. We use this procedure to minimize background
contribution from HAT-P-20 itself and from a companion
star (Bakos et al. 2011). After the background subtraction,
we locate the center of the HAT-P-20 stellar image using
both a 2-D Gaussian fit, and also a center-of-light calcula-
tion. We measure the flux using both constant-radius and
variable-radius apertures, as described in Sec. 4.2.

HAT-P-20’s companion star is physically bound (Ngo
et al. 2014), about one magnitude fainter, and 6.9 arc-sec
(5.7 pixels) distant. As for the WASP-8 case, we estimated
the (small) contribution of diffracted light from the com-
panion by measuring the flux from HAT-P-20 6.9 arc-sec
in the opposite direction from the companion, using the
same photometric apertures that we adopted for HAT-P-
20. After adjusting for the brightness of the companion
relative to HAT-P-20, we find that the depth of the HAT-
P-20 eclipses are diluted by 0.63% and 1.56% at 3.6- and
4.5µm respectively, and we applied this correction to our
results after the decorrelating and fitting process. We also
used photometry of the companion star as a check on our
results for the HAT-P-20 eclipses, as described in Sec. 7.2.

7. eclipses of hat-p-20b

Table 1 lists the parameters of the best-fit for each
eclipse of HAT-P-20. As for previous eclipses, all of our
PLD solutions for HAT-20 have a slope of log σ vs. logN
close to the Poisson value of −0.5, but we do not illustrate
the σ(N) relations in these cases.

Figure 9 illustrates the unbinned vs. binned aspect of
our fits, using the second HAT-20 eclipse at 3.6µm, that
has the most binning (maximum binning facilitates see-
ing the difference). The top panel shows the unbinned
photometry overlaid point-by-point with the best fit cal-
culated using the ci coefficients from the binned fit. The
middle panel shows the binned data and the binned fit,
using a 48-exposure binning selected by our fit procedure
(Sec. 3.3). The lower panel shows the residuals for the
unbinned case (data minus fit), showing the close resemb-
lence of the residuals to white noise.

7.1. 3.6µm Eclipses
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Figure 10 shows the two eclipses at 3.6µm. Our analy-
sis code selects a wide variety of bin sizes when doing the
HAT-P-20 fits (1, 2, 32, and 48 exposures). Consquently,
for Figure 10 we re-bin the photometry so that 50 points
span the data. The lower panel of Figure 10 shows the pos-
terior distributions from the MCMC chains. One chain per
eclipse is illustrated, but we used three independent chains
of 106 steps for each eclipse and their distributions were
closely identical. The two eclipses at this wavelength dif-
fer in their retrieved depth, but the difference is only 246
ppm (see Table 1). Since these are independent events, the
error on the difference in eclipse depths equals the quadra-
ture sum of the errors on the individual eclipses, which is
163 ppm. So the difference in the two eclipse depths at
3.6µm is 1.5σ, consistent with random noise.

We found one anomaly in our PLD solutions. The
eclipse depth for the second eclipse at 3.6µm is degenerate
with the purely temporal (baseline) terms in Eq.(4). We
use a quadratic temporal ramp in the solution, but the de-
generacy remains if we use only a linear ramp (and the fit
is worse). We also explored using an exponential ramp in
Eq.(4) for this eclipse, but we find that it does not produce
an acceptable fit. Examining the fit closely, we found that
the data required a ‘U’-shaped baseline, and an exponen-
tial cannot produce that shape. The ’U’-shape is evident
on the middle panel of Figure 9. We therefore adopt a
quadratic temporal ramp, and we tolerate the degeneracy
because it is included in the error derived from the pos-
terior distributions - note the broader distribution for the
second 3.6µm eclipse on Figure 10. Figure 11 shows the
MCMC chain values for the baseline coefficients and the
pixel (ci) coefficients for this eclipse. The degeneracy is
obvious from the correlations shown in panels on the top
right, giving the linear and quadratic coefficients of time.
Note also that the linear coefficient is correlated with the
quadratic coefficient, since the fit can compensate for less
or more baseline curvature by varying the baseline slope.
None of the ci coefficients exhibit any correlation with the
eclipse depth. Nor do we find correlations between the ci
and the eclipse depths for any data set we have analyzed.

7.2. 4.5µm Eclipses

Figure 12 shows the two eclipses at 4.5µm. For visual
clarity, they are binned to 50 (first eclipse) and 40 points
(second eclipse having less data). In this case, the differ-
ence in eclipse depths (625 ppm) is about four times the
error of the difference (154 ppm). This 4σ difference is not
a statistical fluctuation, given that the posterior distribu-
tions are closely Gaussian. Either the errors are underes-
timated, or the planet is variable. We considered possible
variable dilution by scattered light from the companion
star. Because the companion is 6.8 arc-sec distant from
HAT-P-20, its scattered light contribution is only about
1.5% of HAT-P-20, and our measurements show that it
does not vary sufficiently to significantly affect the rela-
tive eclipse depths at either 3.6 or 4.5µm. Moreover, we
find no degeneracies or any other anomalies in our PLD
fits at this wavelength, in contrast with 3.6µm - where
the eclipse depths are in good agreement in spite of the
degeneracy discussed above.

If the errors are underestimated, the most likely rea-
son is that the results depend on features of the data or

decorrelation process that are not included in the varia-
tions probed by the Markov chains. One such possibility
is the choice of pixels used in the PLD decorrelation. All
of our fits listed in Table 1 use 9 pixels, usually in a 3× 3-
box centered on the star. Since the corner pixels contain
the least flux, it is arguably possible that they are unnec-
essary to the fit, and might even be perturbing it in an
undesirable way.

To explore the robustness of the PLD fits, we re-fit both
eclipses with the corner pixels omitted from the PLD solu-
tion. The posterior distributions for the no-corner fits are
plotted with dashed lines on the lower panel of Figure 12.
They are shifted slightly with respect to the 3 × 3-pixel
solutions, but still indicate different depths for the two
eclipses. Also, the central phases for all of the HAT-P-20b
eclipses (Table 1) are very consistent. We conducted addi-
tional checks such as forcing our code to use the same pa-
rameters (binning, centroiding, aperture type and size) for
both eclipses, and the difference between the two eclipses
persists. We also implemented a conventional polynomial
decorrelation, by replacing the P̂ t

i values in Eq.(4) with
image centroid coordinates (X, X2, Y , and Y 2). Those
posterior distribution are shown as dotted lines on Fig-
ure 12, and are in good agreement with the PLD results.

In principle, if our values for the average brightness of
HAT-P-20’s host star at each eclipse were in error by a
large amount, the resultant incorrect normalization fac-
tors could lead to large errors in the eclipse depths. We
checked this by comparing HAT-P-20 to the companion
star. We find the average brightness of HAT-P-20 de-
creased by 1.6% from the first to the second eclipse at
4.5µm, and the companion decreased by 1.9%. At 3.6µm,
HAT-P-20 decreased by 7.8%, versus a 1.6% increase for
the companion. Although the relatively large variation
of HAT-P-20’s absolute brightness at 3.6µm is puzzling,
it is not large enough to affect the eclipse, and the two
3.6µm eclipse depths are consistent within the errors, as
discussed in Sec. 7.1. Variation in the absolute brightness
of HAT-P-20 at 4.5µm is consistent with the variation seen
in the brightness of the optical companion, so there is no
reason to attribute our result to errors in normalizing the
photoemtry.

We also decorrelated the photometry of the compan-
ion star using the same PLD code as for HAT-P-20. We
solve for the depth of an ‘eclipse’ in the companion data,
constraining it to have the same orbital phase as observed
for HAT-P-20’s eclipse (Table 4), and using a simple linear
ramp in time. These decorrelated results all show flat time
series, with a per-exposure scatter that exceeds the photon
noise by an average of 29% and 13% at 3.6- and 4.5µm,
respectively. The slopes of the binned-σ relations were bet-
ter than -0.48 in all four cases, and the derived ‘eclipse’
depths were consistent with zero. Those depths were (for
the same order as Table 3): +46±99 ppm, −122±78 ppm,
+68± 118 ppm, and −181± 113 ppm.

We conclude that the difference in HAT-P-20’s 4.5µm
eclipse depths is not due to the PLD analyses. In order to
infer the average atmospheric properties of HAT-P-20b, we
calculate the average eclipse depth in each band, weighting
each eclipse by the inverse of its variance. Those average
values are listed in Table 4.
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8. implications for the atmosphere of hat-p-20b

Figure 13 shows our results for eclipse depths of HAT-
P-20b in comparison to the contrast from a best-fit black-
body temperature of 1134 ± 29 K. We estimated the er-
ror for that best-fitting blackbody by increasing the ob-
served error at 4.5µm to allow for the discordant eclipse
depths at that wavelength. The best-fit blackbody tem-
perature is essentially identical to the T = 1157 K that
would prevail if HAT-P-20b absorbs stellar energy with
zero albedo, and re-radiates uniformly over the star-facing
hemisphere. Cowan & Agol (2012) studied the statis-
tics of heat re-distribution using secondary eclipse data,
and Perez-Becker & Showman (2013) studied heat re-
distribution using phase curves. Both find a tendency for
the most strongly-irradiated planets to circulate heat with
the least efficiency. A strongly-irradiated planet will be
hot, and the radiative time constant decreases strongly
with temperature. A short radiative time constant in
turn implies that the planet re-radiates incident stellar
energy before hydrodynamics can advect it to the anti-
stellar hemisphere (Showman & Guillot 2002; Cowan &
Agol 2012; Perez-Becker & Showman 2013). HAT-P-20b is
irradiated at only a modest level (equilibrium temperature
970K for 2-hemisphere re-radiation), but the high density
and probable high metallicity of the planet should produce
higher atmospheric opacity. We suggest that high opac-
ity may sufficiently compensate for less irradiation, keep-
ing the radiative time scale short compared to advection.
Lewis et al. (2010) studied the day-night flux difference
for GJ 436b using a numerical hydrodynamic model, and
found that that the difference does increase with metallic-
ity, but only by ∼ 30%, less than needed to account for
HAT-P-20b. However, HAT-P-20b is hotter than GJ 436b,
and the effect of metallicity should be larger at higher
temperature. Also, the atmosphere of HAT-P-20b may
contain abundant absorbing clouds because the tempera-
ture is below the condensation point for many compounds,
and the metallicity may be high. In that case, cloud ab-
sorpion could further increase the day-night temperature
difference.

Figure 13 includes two solar metallicity model atmo-
spheres (Burrows et al. 2006, 2007; Fortney et al. 2005,
2006a,b, 2008) that have minimal heat re-distribution.
These models have relatively strong absorption in the
4.5µm band due to carbon monoxide and water vapor
(Sharp & Burrows 2007), and they therefore deviate from
a blackbody model. However, we find that a blackbody
at 1134 K is essentially a perfect fit to our average eclipse
depths, matching each value in Table 4 to better than 1σ.
This blackbody-like behavior frustrates our inital moti-
vation to find strong molecular absorption in a modestly-
irradiated, metal-rich, giant exoplanet. However, our work
does suggest possible variability in the eclipse spectrum of
this planet.

Assuming solar composition, the 4.5µm Spitzer band is
formed higher in the exoplanetary atmosphere than is the
3.6µm band. If conditions in the atmosphere vary strongly
with time, then we expect the greatest variability at the
highest altitude, because low density regions are more eas-
ily perturbed than high density regions. Two mechanisms
can translate atmospheric variability to the emergent spec-
trum: patchy clouds, and hot spots at any altitude (Mor-

ley et al. 2014). Hot spots at high altitude are qualita-
tively consistent with our result of divergent eclipse depths
at 4.5µm, but the requisite amplitude seems unrealistic.
Brown dwarfs are often found to exhibit variability due
to rotational modulation, but HAT-P-20b would have to
exhibit a much greater amplitude of variability than do
brown dwarfs. The large amplitude of apparent variability
that we observe is difficult to reconcile with our expecta-
tions for hot Jupiter atmospheres.

An arguably more plausible explanation for eclipse
depth variability is circum-planetary thermal or fluores-
cent emission in the fundamental band of CO, due to
planetary mass loss or ongoing accretion. The CO band
falls in Spitzer’s 4.5µm bandpass, and was considered as
producing an anomalous eclipse of CoRoT-2b by Deming
et al. (2011). HAT-20b is likely to be a high-metallicity
planet, and the CO abundance will increase approximately
as the square of the metallicity, so large CO column densi-
ties are plausible. Moreover, if circum-planetary emission
contaminates the 4.5µm eclipse depth, then our inferred
temperature for the planet will be biased too high, and
the efficiency of longitudinal heat transfer could be higher,
making that aspect of the observations less puzzling.

Claiming a high degree of variability in eclipse depth re-
quires strong evidence, and two eclipses - no matter how
thoroughly they are analyzed - are insufficient to conclude
that this planet is variable. However, our results are suffi-
cient to warrant further eclipse monitoring of HAT-P-20b.
Our working hypothesis is that circum-planetary emission
in the fundamental CO band may be important. Moni-
toring of the 4.5µm eclipse depth by Spitzer can establish
whether there is real photometric variability, but spectro-
scopic observations using JWST will be necessary to detect
possible CO emission.

9. implications for the orbit of hat-p-20b

The central phase of all four eclipses we observe is con-
sistently later than the 0.5 value for a circular orbit (Ta-
bles 1 & 4). We first ask whether this could be due to
the accumulated uncertainty in the orbital period. We use
the most precise available orbital period from Granata et
al. (2014), but even the discovery-era period error given
by Bakos et al. (2011) (4.0 × 10−6 days) is already an
order of magnitude too small to account for the phase
shifts we observe. Using the ephemeris from Granata et
al. (2014), we calculate the average eclipse phase at each
wavelength, and the grand average for all four eclipses.
The results are listed in Table 4; we find a grand average
orbital phase of 0.50843 ± 0.00041, and the uncertainty
in the ephemeris from Granata et al. (2014) contributes
negligibly. The light travel time across the orbit is 36 sec-
onds, hence the eclipse for a circular orbit would occur
at phase 0.50014, and our measured phase corresponds to
e cos(ω) = 0.0130±0.0006. Radial velocity observations of
this system were analyzed by Knutson et al. (2014), who
derived e cos(ω) = 0.013+0.0023

−0.0025, closely consistent with our
secondary eclipse timings. To close the loop on this sys-
tem, we have derived new orbital parameters using a joint
MCMC fit of the RV and secondary eclipse timings, as de-
scribed by Knutson et al. (2014). The results from this
fit are given in Table 5, and illustrated in Figure 14. The
priors used in the fit are the RV observations reported by
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Knutson et al. (2014), the transit ephemeris from Granata
et al. (2014), and the secondary eclipse timings from Ta-
ble 4. Our result of e cosω = 0.01352+0.00054

−0.00057 establishes
the small eccentricity of the orbit to high statistical confi-
dence. Given the existence of a bound stellar companion,
HAT-P-20b is another excellent candidate for orbital evo-
lution via Kozai migration (Fabrycky & Tremaine 2007),
or other three-body mechanism.

10. summary

In this paper we have introduced a new method for cor-
recting the intra-pixel effect in Spitzer photometry at 3.6-
and 4.5µm, that we call pixel-level decorrelation (PLD).
PLD differs fundamentally from all previous methods be-
cause it removes the effect of positional jitter without ex-
plicitly using the position of the stellar image. We ar-
gued the conceptual advantages of PLD (Sec. 2), and we
have tested it using both synthetic (Sec. 4) and real data
(Sec. 5). We point out that all methods to decorrelate
Spitzer photometry at these wavelengths are subject to
the mathematical reality that the solution is a function of
the time scale (i.e., degree of data binning) because both
the dependent and independent variables contain random
error (Sec. 3.1). Moreover, there are physical reasons to
apply PLD to binned data, discussed in Sec. 3.2. Our
fitting procedure finds the best fit to Spitzer data by con-
sidering a range of time scales, yielding a broad bandwidth
solution having minimal red noise (Sec. 3.3).

Our tests of PLD exploited a new capability to gener-
ate synthetic Spitzer data, developed at the Spitzer Sci-
ence Center. These tests began with synthetic data hav-
ing no planet and no photon noise, thereby isolating the
intra-pixel detector effect (Sec. 4.2). We tested PLD us-
ing synthetic data for WASP-52b, and we recovered the
correct transit and eclipse depth to within 1σ (Sec. 4.3).
We also recovered the phase curve amplitude of WASP-
52, but our PLD result was off by 3σ. The large image
motion that accumulates over the time scale of a phase
curve measurement is beyond the range of applicability
for our current version of PLD, so it is not yet applicable
to phase curve measurements. However, PLD is very ro-
bust for transits and eclipses. We tested PLD on five real

systems. In cases where there is no reason to doubt previ-
ous measurements, our PLD result agrees with published
results. These cases include GJ 436b (Sec. 5.1), CoRoT-
2b (Sec. 5.2), and WASP-14b (Sec. 5.3). In two systems
(WASP-8b, Sec. 5.4, and WASP-12b, Sec. 5.5) our PLD
eclipse depths are more astrophysically plausible than the
original published results, and have smaller random errors.
For example, our error for WASP-8b at 3.6µm improves
on the result from Cubillos et al. (2013) by more than a
factor of two, and our eclipse depth agrees well with the
same modeled spectrum they used to account for eclipses
in other Spitzer bands.

We apply our PLD analysis to two eclipses of HAT-P-
20b at each Spitzer wavelength (Secs. 6 and 7). We find
that the average spectrum of the planet is very close to
a blackbody at 1134 ± 29K, indicating a low albedo and
little if any longitudinal re-distribution of stellar heating
(Sec. 8). Our results at 4.5µm (Sec. 7.2) yield two eclipse
depths that differ by 4σ. Although two eclipses are not
enough to conclude that the planet’s spectrum is variable,
we do conclude that there is justification to monitor the
eclipse depth at 4.5µm using Spitzer, and to search for cir-
cumplanetary emission in the 1-0 fundamental CO band
using JWST. All four of our measured eclipses occur at a
phase later than 0.5, indicating a slightly elliptical orbit. A
joint MCMC fit of our eclipse times with RV observations
and and the transit time yields e cosω = 0.01352+0.00054

−0.00057,
and establishes the small eccentricity of the orbit to high
statistical confidence (Sec. 9). Given the existence of a
physically bound companion star, HAT-P-20b is another
candidate for orbital evolution via Kozai migration, or
other 3-body process.
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Fig. 1.— Graphical illustration of how PLD works, for the 2nd eclipse of HAT-P-20b at 3.6µm (see Table 3, and Figure 10). The time series

for the relative values of the normalized pixels (P̂ t
i , see Eq. 3), are each multiplied by the ci coefficients, and added to the eclipse model and

the temporal ramp (t = time, or orbital phase) to produce the total fit, shown in red overlying the aperture photometry at the top. (These

are the actual P̂ t
i time series used in the solution, but for clarity we here exaggerate the curvature of the temporal ramp.) The inset at the

lower left shows the pixel designations. In this case nine pixels are used, in a 3 × 3 spatial arrangement. Nothing limits PLD to using nine
pixels. The number and spatial arrangement of the pixels that are actually used is determined by the distribution of intensity in the stellar
image.
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Fig. 2.— Photometry of synthetic 3.6µm data for WASP-52, with the photon noise turned off and the planet removed. All of the
fluctuations in the top panel are due to the interaction of the telescope PSF with the spatial structure of the detector. The blue Xs mark
the times where PSF fluctuations were inserted into the data. The second panel overlays the PLD fit from Eq.(4), and the two lowest panels
show the residuals for the PLD fit and also for a fit using a second order polynomial in both X and Y. Note the different ordinate scales,
especially for for lower panels.
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Fig. 3.— Fitting to photometry of synthetic 4.5µm data for WASP-52b, with photon and detector read noise included. One transit (off
scale) and two secondary eclipses of the planet are present in these synthetic data, as well as a phase curve modulation in brightness. These
are an updated version of the data used for the IRAC Data Challenge Workshop (see text). Results from this fit are compared to the true
values input to the simulation in Table 1.
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Fig. 4.— PLD results for the 4.5µm time series analyzed originally by Ballard et al. (2010). The top panel shows the residuals from our
PLD solution, binned to a time resolution of approximately 20 minutes (compare to Figure 6 of Ballard et al. 2010) The bottom panel shows
the standard deviation of the residual from our PLD fit, binned on various time scales (open points), including the 20-minute time scale used
for the upper panel (solid point). The line is not a fit to these points; it’s the theoretical relation that extrapolates the single-frame precision
to larger bin sizes using a slope of exactly −0.5.
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Fig. 5.— Eclipse of WASP-14b analyzed using PLD, for comparison to Blecic et al. (2013). The top panel shows the eclipse curve for
binned data, using a bin size the same as Blecic et al. (2013). (The results published by Blecic et al. (2013) are overplotted in gray.) The data
and eclipse curve are normalized to unity in eclipse (star alone contributing). The middle panel shows the residuals from our fit (solid points
with error bars), as well as a much coarser binning to illustrate the stability of the fit (red points). The bottom panel shows the standard
deviation of the residuals, at various bin sizes, including the bins used for the top panel and the red points in the middle panel. The solid
blue line is not a fit to these points; it’s the theoretical relation that extrapolates the single-frame precision to larger bin sizes using a slope
of exactly −0.5. The dotted blue line marks the time scale of ingress and the dashed green line marks the in-eclipse time scale.
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Fig. 6.— Eclipse of WASP-8b analyzed using PLD, for comparison to Cubillos et al. (2013). The panels are the same as for Figure 4.
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Fig. 7.— Eclipse of WASP-8b analyzed using PLD, from aperture photometry and also from simple ‘sum-of-pxels’ data that does not not
require determining the centroid of the stellar image. The data and eclipse curve are normalized to unity in eclipse (star alone contributing).
The lower panel shows the posterior distrubutions of eclipse depth, and the vertical lines indicate the minimum χ2 solutions. The eclipse
depth from Cubillos et al. (2013) is also indicated, with 1σ error limits (dashed lines).
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Fig. 8.— Eclipse of WASP-12b analyzed using PLD; the panels are the same as in Figure 4. The points plotted in gray in the top panel
are from Cowan et al. (2012).
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Fig. 9.— Illustration of the unbinned vs. binned aspect of our fits, using the second eclipse of HAT-P-20 at 3.6µm. The top panel shows
the unbinned photometry, and the overlaid red points are fitted values. We include the eclipse in the fit, because we are here illustrating the
quality of the total fit. The middle panel shows the photometry binned over 48 points, overlaid by the fit (red points). The ci coefficients
from this fit to the binned photometry were used to calculate the unbinned fit values in the top panel. The bottom panel shows the unbinned
residuals from the top panel (data minus fit). Note the white-noise-like appearance of these residuals. The standard deviation of the residuals
is 3150 ppm, 22% greater than the photon noise (2570 ppm).
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Fig. 10.— Two PLD eclipses of HAT-P-20b at 3.6µm. The observations were binned to 50 points per data set for clarity of illustration.
Intensity is normalized to unity in eclipse (star alone contributing). The lower panel shows the posterior distributions for eclipse depth. The
vertical lines are the minimum χ2 values chosen using our broad bandwidth criterion (Sec 3.3).
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Fig. 11.— MCMC correlation plots for the second eclipse of HAT-P-20 at 3.6µm (see Table 3, and Figure 10). The P1 through P9 panels
give the values of the Ci coefficients in Eq. 4. The panels illustrate the density of all points in this 106-step chain, with the color bar indicating
the relative point density. The panels labeled f , and g give the linear and quadratic coefficients of time for the temporal ramp, and D is the
eclipse depth (Eq. 4 and Fig. 1). The inset shows the designations of the 9 pixels and their average relative values (red numbers).
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Fig. 12.— Two eclipses of HAT-P-20b at 4.5µm. The observations were binned to 50 (first eclipse) and 40 (second eclipse) points per
data set for clarity of illustration. Intensity is normalized to unity in eclipse (star alone contributing). The lower panel shows the posterior
distributions for eclipse depth. The distributions shown as dashed lines omit the corner pixels from the PLD fit, and the distributions shown as
dotted lines use a polynomial decorrelation, but retaining the broad bandwidth criterion of Sec. 3.3. Both the dashed and dotted distributions
have been smoothed slightly to make them more legible. The vertical lines are the minimum χ2 values chosen using our broad bandwidth
criterion.
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Fig. 13.— Results for HAT-P-20b eclipse depths in the two Warm Spitzer bands, averaging both eclipses in each band. The values from
individual eclipses are plotted in light gray. The observations are compared to the contrast expected for a solar abundance planet having
day-side re-radiation, with two different models from Adam Burrows and Jonathan Fortney. The black line is a 1134K blackbody. We used
a Phoenix metal-rich model atmosphere for the star (4600/4.5/0.3) (Allard et al. 2003). The open points show the values expected when the
stellar and planetary fluxes are integrated over the Spitzer bandpass functions; they are offset slightly to longer wavelength for visual clarity.
The red dotted line is a Burrows model with 10 times solar metallicity for the planet.
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Fig. 14.— Joint fit of RV data from Knutson et al. (2014), and our secondary eclipse times for HAT-P-20b. Top: RV time series for
HAT-P-20b and best-fit model in blue. Data are from Knutson et al. (2014), plus one additional measurement. Top-lower: Residual from
the best-fit single-planet model. The best fitting linear trend has not been subtracted. The statistically significant linear trend first noted
in Knutson et al. (2014) is clearly visible, and has continued through the most recent data point. This trend is likely caused by the distant
stellar companion. Lower: Radial velocity curve phase-folded to the best-fit ephemeris. Phase 0.0 is the primary transit.
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Table 3

Times of Spitzer observations of HAT-P-20, using IRAC subarray mode. σph is the theoretical noise level for a
single exposure, in parts-per-million. δpix is the total peak-to-peak value of image motion during each data set,
in IRAC pixels and corrected for measurement errors. The eclipses are listed in the same order as for the

HAT-P-20 eclipses in Table 1.

Wavelength (µm) HJD(start) HJD(end) Number of exposures σph δpix
3.6 2456062.705 2456062.954 10624 2500 0.06
3.6 2456810.376 2456810.553 7552 2570 0.09
4.5 2456085.719 2456085.967 10624 3500 0.06
4.5 2456816.113 2456816.289 7488 3530 0.19

Table 4

Results for HAT-P-20b, for individual eclipses, as well as averaging both eclipses at each wavelength, and a
grand average orbital phase for all four eclipses. The eclipse times are BJD(TDB). The phase error for the
grand average includes a 4.0× 10−6 day uncertainty in the orbital period (Bakos et al. 2011). The error for
the average eclipse depth at 4.5µm does not include the possible variability in the eclipse depth (see text).

Wavelength (µm) Eclipse depth (ppm) Eclipse time Eclipse phase
3.6 550± 84 2456062.87458± 0.00308 0.5090± 0.0011
3.6 796± 140 2456810.45414± 0.00241 0.5078± 0.0008
4.5 1377± 103 2456085.87540± 0.00127 0.5084± 0.0004
4.5 752± 114 2456816.20794± 0.00236 0.5089± 0.0008
3.6 average 615± 82 - 0.5082± 0.0007
4.5 average 1096± 77 - 0.5085± 0.0005
grand average - - 0.50843± 0.00041
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Table 5

HAT-P-20 Orbit Results

Parameter Value Units

Tconj,b 2455598.48484 +0.00032
−0.0003 BJDTDB√

eb cosωb 0.1035 +0.0049
−0.0051√

eb sinωb -0.08 +0.017
−0.014

log(Kb) 3.0959 +0.0011
−0.001 m s−1

γ 83.1 +2.4
−2.3 m s−1

γ̇ -0.0154 +0.0037
−0.0039 m s−1day−1

γ̈ ≡ 0.0 ±0.0 m s−1day−2

jitter 7.0 +2.2
−1.6 m s−1

RV Model Parameters

Pb 2.8753187 ±1.8e− 06 days
Tconj,b 2455598.48484 +0.00032

−0.0003 BJDTDB

eb 0.0171 +0.0018
−0.0016

ωb 322.4 +7.4
−5.9 degrees

Kb 1247.0 +3.0
−2.9 m s−1

γ 83.1 +2.4
−2.3 m s−1

γ̇ -0.0154 +0.0037
−0.0039 m s−1day−1

γ̈ ≡ 0.0 ±0.0 m s−1day−2

jitter 7.0 +2.2
−1.6 m s−1

RV Derived Parameters

e cosω 0.01352 +0.00054
−0.00057

e sinω -0.0104 +0.0026
−0.0025

Reference epoch for γ,γ̇,γ̈: 2455787.0
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