24 research outputs found

    Stochastic Processes in Physics: Deterministic Origins and Control

    Get PDF
    Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale

    Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Management strategies for control of vector-borne diseases, for example Zika or dengue, include using larvicide and/or adulticide, either through large-scale application by truck or plane or through door-to-door efforts that require obtaining permission to access private property and spray yards. The efficacy of the latter strategy is highly dependent on the compliance of local residents. Here we develop a model for vector-borne disease transmission between mosquitoes and humans in a neighborhood setting, considering a network of houses connected via nearest-neighbor mosquito movement. We incorporate large-scale application of adulticide via aerial spraying through a uniform increase in vector death rates in all sites, and door-to-door application of larval source reduction and adulticide through a decrease in vector emergence rates and an increase in vector death rates in compliant sites only, where control efficacies are directly connected to real-world experimentally measurable control parameters, application frequencies, and control costs. To develop mechanistic insight into the influence of vector motion and compliance clustering on disease controllability, we determine the basic reproduction number R0 for the system, provide analytic results for the extreme cases of no mosquito movement, infinite hopping rates, and utilize degenerate perturbation theory for the case of slow but non-zero hopping rates. We then determine the application frequencies required for each strategy (alone and combined) in order to reduce R0 to unity, along with the associated costs. Cost-optimal strategies are found to depend strongly on mosquito hopping rates, levels of door-to-door compliance, and spatial clustering of compliant houses, and can include aerial spray alone, door-to-door treatment alone, or a combination of both. The optimization scheme developed here provides a flexible tool for disease management planners which translates modeling results into actionable control advice adaptable to system-specific details.Simons Foundation (426126)University of Kansas General Research Grant (2301-2105075)Department of Defense SERDP contract (W912HQ-16-C-0054

    Gene expression profiling in whole blood of patients with coronary artery disease

    Get PDF
    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Studying mate choice in the wild using 3D printed decoys and action cameras: a case of study of male choice in the northern map turtle

    No full text
    Mate choice experiments are essential to further our understanding of sexual selection, but can be challenging to design and conduct with most wild animals. 3D printing technology is creating opportunities to conduct mate choice experiments in the field by facilitating the production of biologically accurate decoys. We used pairs of 3D printed female decoys differing only in size to test whether free-ranging male northern map turtles, Graptemys geographica, prefer larger females. Males interacted and attempted to mate significantly more with the larger decoys. By selecting larger females, males should increase their fitness because of the correlation between female size and hatchling size. Our experiment demonstrated that 3D printing technology can be a valuable tool to study animal behaviour in the field
    corecore