445 research outputs found

    Bifractionated CPT-11 with LV5FU2 infusion (FOLFIRI-3) in combination with bevacizumab: clinical outcomes in first-line metastatic colorectal cancers according to plasma angiopoietin-2 levels.

    Get PDF
    International audienceBACKGROUND: Optimization of chemotherapy effectiveness in metastatic colorectal cancers (mCRC) is a major endpoint to enhance the possibility of curative intent surgery. FOLFIRI3 has shown promising results as second-line chemotherapy for mCRC patients previously exposed to oxaliplatin. The clinical efficacy of FOLFIRI3 was never determined in association with bevacizumab in non-previously treated mCRC patients. METHODS: We conducted a phase II clinical trial to characterize the response rate and toxicity profile of FOLFIRI3-bevacizumab as initial treatment for mCRC. Sixty-one patients enrolled in 3 investigation centers were treated with FOLFIRI3-bevacizumab (median of 10 cycles) followed by a maintenance therapy combining bevacizumab and capecitabine. Levels of plasma angiopoietin-2 (Ang-2) were measured by enzyme-linked immunosorbent assay at baseline. RESULTS: Overall response rate (ORR) was 66.7% (8% of complete and 58% of partial responses). The disease control rate was 91.7%. After a median time of follow-up of 46.7 months, 56 patients (92%) had progressed or died. The median progression free survival (PFS) was 12.7 months (95% confidence interval (CI) 9.7-15.8 months). The median overall survival (OS) was 24.5 months (95% CI: 10.6-38.3 months). Twenty-one patients underwent curative intent-surgery including 4 patients with disease initially classified as unresectable. Most common grade III-IV toxicities were diarrhea (15%), neutropenia (13%), asthenia (10%), and infections (4%). Hypertension-related medications needed to be increased in 3 patients. In multivariate analysis, surgery of metastases and Ang-2 levels were the only independent prognostic factors for PFS and OS. Indeed, baseline level of Ang-2 above 5 ng/mL was confirmed as an independent prognostic factor for progression free survival (HR = 0.357; 95% CI: 0.168-0.76, p = 0.005) and overall survival (HR = 0.226; 95% CI: 0.098-0.53, p = 0.0002). CONCLUSIONS: As front-line therapy, FOLFIRI-3-bevacizumab is associated with an acceptable toxicity and induced promising objective response rates. However, unfavorable clinical outcomes were observed in patients with high levels of angiopoietin-2

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules

    Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival.

    Get PDF
    TAM family receptor tyrosine kinases comprising Tyro3 (Sky), Axl, and Mer are overexpressed in some cancers, correlate with multidrug resistance and contribute to tumourigenesis by regulating invasion, angiogenesis, cell survival and tumour growth. Mutations in the gene coding for a tumour suppressor merlin cause development of multiple tumours of the nervous system such as schwannomas, meningiomas and ependymomas occurring spontaneously or as part of a hereditary disease neurofibromatosis type 2. The benign character of merlin-deficient tumours makes them less responsive to chemotherapy. We previously showed that, amongst other growth factor receptors, TAM family receptors (Tyro3, Axl and Mer) are significantly overexpressed in schwannoma tissues. As Axl is negatively regulated by merlin and positively regulated by E3 ubiquitin ligase CRL4DCAF1, previously shown to be a key regulator in schwannoma growth we hypothesized that Axl is a good target to study in merlin-deficient tumours. Moreover, Axl positively regulates the oncogene Yes-associated protein, which is known to be under merlin regulation in schwannoma and is involved in increased proliferation of merlin-deficient meningioma and mesothelioma. Here, we demonstrated strong overexpression and activation of Axl receptor as well as its ligand Gas6 in human schwannoma primary cells compared to normal Schwann cells. We show that Gas6 is mitogenic and increases schwannoma cell-matrix adhesion and survival acting via Axl in schwannoma cells. Stimulation of the Gas6/Axl signalling pathway recruits Src, focal adhesion kinase (FAK) and NFκB. We showed that NFκB mediates Gas6/Axl-mediated overexpression of survivin, cyclin D1 and FAK, leading to enhanced survival, cell-matrix adhesion and proliferation of schwannoma. We conclude that Axl/FAK/Src/NFκB pathway is relevant in merlin-deficient tumours and is a potential therapeutic target for schwannoma and other merlin-deficient tumours

    Arizona\u27s Vulnerable Populations

    Get PDF
    Arizona’s vulnerable populations are struggling on a daily basis but usually do so in silence, undetected by traditional radar and rankings, often unaware themselves of their high risk for being pushed or pulled into a full crisis. Ineligible for financial assistance under strict eligibility guidelines, they don’t qualify as poor because vulnerable populations are not yet in full crisis. To be clear, this report is not about the “poor,” at least not in the limited sense of the word. It is about our underemployed wage earners, our single-parent households, our deployed or returning military members, our under-educated and unskilled workforce, our debt-ridden neighbors, our uninsured friends, our family members with no savings for an emergency, much less retirement

    Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon

    Get PDF
    Supplementary Data are available at NAR OnlineThe human immunodeficiency virus type 1 (HIV-1) regulator Tat is essential for viral replication because it achieves complete elongation of viral transcripts. Tat can be released to the extracellular space and taken up by adjacent cells, exerting profound cytoskeleton rearrangements that lead to apoptosis. In contrast, intracellular Tat has been described as protector from apoptosis. Tat gene is composed by two coding exons that yield a protein of 101 amino acids (aa). First exon (1–72aa) is sufficient for viral transcript elongation and second exon (73–101 aa) appears to contribute to non-transcriptional functions. We observed that Jurkat cells stably expressing intracellular Tat101 showed gene expression deregulation 4-fold higher than cells expressing Tat72. Functional experiments were performed to evaluate the effect of this deregulation. First, NF-iB-, NF-AT- and Sp1-dependent transcriptional activities were greatly enhanced in Jurkat-Tat101, whereas Tat72 induced milder but efficient activation. Second, cytoskeleton-related functions as cell morphology, proliferation, chemotaxis, polarization and actin polymerization were deeply altered in Jurkat- Tat101, but not in Jurkat-Tat72. Finally, expression of several cell surface receptors was dramatically impaired by intracellular Tat101 but not by Tat72. Consequently, these modifications were greatly dependent on Tat second exon and they could be related to the anergy observed in HIV-1-infected T cells.Plan Nacional del SIDA (MVI 1434/05–5), FIPSE 36584/ 06 and 36633/07, VIRHORST Network from Comunidad de Madrid (Spain), FIS PI040614 and PI0808752, ISCIII-RETIC RD06/0006, EUROPRISE Network of Excellence of the EU (Grant no. LSHP CT-2006- 037611), and BIO2008-04384 from the Ministerio de Ciencia e Innovacio´ n, Espan˜ a. Funding for open access charge: Instituto de Salud Carlos III, Ministry of Science and Technology, Spain.Peer reviewe

    Isothiocyanate NB7M causes selective cytotoxicity, pro-apoptotic signalling and cell-cycle regression in ovarian cancer cells

    Get PDF
    The present report identifies indole-3-ethyl isothiocyanate NB7M as a potent cytotoxic agent with selective activity against cell lines derived from various tumour types. Ovarian cancer cell lines showed sensitivity to NB7M (60–70% cytotoxicity at 2.5 μM), in contrast to control cells (TCL-1 and HTR-8; IC50 ∼15 μM). In a screen performed by the National Cancer Institute (NCI) (NCI60 cancer cell-line assay) NB7M (NSC746077) reduced growth up to 100% with an IC50 between 0.1 and 10 μM depending on the cell line studied. Using SKOV-3 ovarian cancer cells as a model, mechanisms of cytotoxicity were analysed. NB7M caused hallmarks of apoptosis such as PARP-1 deactivation, chromatin condensation, DNA nicks, activation of caspases-9, -8, -3, loss of mitochondrial transmembrane depolarisation potential and upregulation of pro-apoptotic mitogen activated protein kinases (p38, SAP/JNK). NB7M downregulated phosphorylation of prosurvival kinases (PI-3K, AKT, IKKα), transcription factor NF-κB, and expression of DNA-Pk and AXL receptor tyrosine kinase. Subcytotoxic doses of NB7M inhibited DNA synthesis, caused G1-phase cell-cycle arrest and upregulated p27 expression. The present report suggests that NB7M is a selective cytotoxic agent in vitro for cell lines derived from ovarian and certain other tumours. In addition, NB7M acts as a growth/cell-cycle-suppressing agent and may be developed as a potential therapeutic drug to treat ovarian cancer

    Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    Get PDF
    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway
    corecore