35 research outputs found

    Properties and evolution of radio-AGN hosts since z~4

    Get PDF
    We analyse the multi-wavelength properties of about 6200 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively-efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<2, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples

    Tracing AGN accretion and star formation in Herschel galaxies

    Get PDF
    In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution

    The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to z6z\sim6

    Get PDF
    We study a sample of 1,604 moderate-to-high radiative luminosity active galactic nuclei (HLAGN) selected at 3 GHz within the VLA-COSMOS 3 GHz Large Project. These were classified by combining multiple AGN diagnostics: X-ray data, mid-infrared data and broad-band spectral energy distribution fitting. We decompose the total radio 1.4 GHz luminosity (L1.4 GHz,TOT\mathrm{L_{1.4\ GHz,TOT}}) into the emission originating from star formation and AGN activity by measuring the excess in L1.4 GHz,TOT\mathrm{L_{1.4\ GHz,TOT}} relative to the infrared-radio correlation of star-forming galaxies. To quantify the excess, for each source we calculate the AGN fraction (fAGN\mathrm{f_{AGN}}), the fractional contribution of AGN activity to L1.4 GHz,TOT\mathrm{L_{1.4\ GHz,TOT}}. The majority of the HLAGN, (68.0±1.5)%(68.0\pm1.5)\%, are dominated by star-forming processes (fAGN0.5f_{AGN}\leq0.5), while (32.0±1.5)%(32.0\pm1.5)\% are dominated by AGN-related radio emission (0.5<fAGN10.5<f_{AGN}\leq1). We use the AGN-related 1.4 GHz emission to derive the 1.4 GHz AGN luminosity functions of HLAGN. By assuming pure density and pure luminosity evolution models we constrain their cosmic evolution out to z6z\sim6, finding Φ(z)(1+z)(2.64±0.10)+(0.61±0.04)z\mathrm{\Phi^* (z) \propto (1+z)^{(2.64\pm0.10)+(-0.61\pm0.04) z}} and L(z)(1+z)(3.97±0.15)+(0.92±0.06)z\mathrm{L^* (z) \propto (1+z)^{(3.97\pm0.15) + (-0.92\pm0.06)z}}. These evolutionary laws show that the number and luminosity density of HLAGN increased from higher redshifts (z6z\sim6) up to a maximum in the redshift range 1<z<2.5 1<z<2.5, followed by a decline towards local values. By scaling the 1.4 GHz AGN luminosity to kinetic luminosity using the standard conversion, we estimate the kinetic luminosity density as a function of redshift. We compare our result to the semi-analytic models of radio mode feedback finding that this feedback could have played an important role in the context of AGN-host coevolution in HLAGN which show evidence of AGN-related radio emission (fAGN>0f_{AGN}>0).Comment: 20 pages, 14 figure

    Feedback factory : multiple faint radio jets detected in a cluster at z=2

    Get PDF
    We report the detection of multiple faint radio sources, that we identify as active galactic nucleus (AGN) jets, within CLJ1449+0856 at z = 2 using 3 GHz Very Large Array observations. We study the effects of radio-jet-based kinetic feedback at high redshifts, which has been found to be crucial in low-redshift clusters to explain the observed thermodynamic properties of their intracluster medium (ICM). We investigate this interaction at an epoch featuring high levels of AGN activity and a transitional phase of ICM in regards to the likelihood of residual cold gas accretion. We measure a total flux of 30.6 +/- 3.3 mu Jy from the six detected jets. Their power contribution is estimated to be 1.2 (+/- 0.6) x 10(44) erg s(-1), although this value could be up to 4.7 x 10(44) erg s(-1). This is a factor of similar to 0.25-1.0 of the previously estimated instantaneous energy injection into the ICM of CLJ1449+0856 from AGN outflows and star formation that have already been found to be sufficient in globally offsetting the cooling flows in the cluster core. In line with the already detected abundance of star formation, this mode of feedback being distributed over multiple sites, contrary to a single central source observed at low redshifts, points to accretion of gas into the cluster centre. This also suggests a 'steady state' of the cluster featuring non-cool-core-like behaviour. Finally, we also examine the total infrared-radio luminosity ratio for the known sample of galaxies within the cluster core and find that dense environments do not have any serious consequence on the compliance of galaxies to the infrared-radio correlation.Peer reviewe

    "Super-deblended" dust emission in galaxies: II. Far-IR to (sub)millimeter photometry and high redshift galaxy candidates in the full COSMOS field

    Get PDF
    We present a "super-deblended" far-infrared to (sub)millimeter photometric catalog in the Cosmic Evolution Survey (COSMOS), prepared with the method recently developed by Liu et al. 2018, with key adaptations. We obtain point spread function (PSF) fitting photometry at fixed prior positions including 88,008 galaxies detected in either VLA 1.4~GHz, 3~GHz and/or MIPS 24~μm images. By adding a specifically carved mass-selected sample (with an evolving stellar mass limit), a highly complete prior sample of 194,428 galaxies is achieved for deblending FIR/(sub)mm images. We performed ``active' removal of non relevant priors at FIR/(sub)mm bands using spectral energy distribution (SED) fitting and redshift information. In order to cope with the shallower COSMOS data we subtract from the maps the flux of faint non-fitted priors and explicitly account for the uncertainty of this step. The resulting photometry (including data from Spitzer, Herschel, SCUBA2, AzTEC, MAMBO and NSF's Karl G. Jansky Very Large Array at 3~GHz and 1.4~GHz) displays well behaved quasi-Gaussian uncertainties, calibrated from Monte Carlo simulations and tailored to observables (crowding, residual maps). Comparison to ALMA photometry for hundreds of sources provide a remarkable validation of the technique. We detect 11,220 galaxies over the 100--1200~μm range, extending to zphot∼7. We conservatively selected a sample of 85 z>4 high redshift candidates, significantly detected in the FIR/(sub)mm, often with secure radio and/or Spitzer/IRAC counterparts. This provides a chance to investigate the first generation of vigorous starburst galaxies (SFRs∼1000M⊙~yr−1). The photometric and value added catalogs are publicly released

    An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array

    Get PDF
    We determine the radio size distribution of a large sample of 152 SMGs in COSMOS that were detected with ALMA at 1.3 mm. For this purpose, we used the observations taken by the VLA-COSMOS 3 GHz Large Project. One hundred and fifteen of the 152 target SMGs were found to have a 3 GHz counterpart. The median value of the major axis FWHM at 3 GHz is derived to be 4.6±0.44.6\pm0.4 kpc. The radio sizes show no evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between 1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α=0.67\alpha=-0.67 and TB=12.6±2T_{\rm B}=12.6\pm2 K. Three of the target SMGs, which are also detected with the VLBA, show clearly higher brightness temperatures than the typical values. Although the observed radio emission appears to be predominantly powered by star formation and supernova activity, our results provide a strong indication of the presence of an AGN in the VLBA and X-ray-detected SMG AzTEC/C61. The median radio-emitting size we have derived is 1.5-3 times larger than the typical FIR dust-emitting sizes of SMGs, but similar to that of the SMGs' molecular gas component traced through mid-JJ line emission of CO. The physical conditions of SMGs probably render the diffusion of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge. This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known IR-radio correlation.Comment: 32 pages (incl. 5 appendices), 17 figures, 7 tables; accepted for publication in A&A; abstract abridged for arXi

    Probing black hole accretion tracks, scaling relations, and radiative efficiencies from stacked X-ray active galactic nuclei

    Get PDF
    The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized

    Noema formIng Cluster survEy (NICE): Discovery of a starbursting galaxy group with a radio-luminous core at z=3.95

    Full text link
    The study of distant galaxy groups and clusters at the peak epoch of star formation is limited by the lack of a statistically and homogeneously selected and spectroscopically confirmed sample. Recent discoveries of concentrated starburst activities in cluster cores have opened a new window to hunt for these structures based on their integrated IR luminosities. Hereby we carry out the large NOEMA (NOrthern Extended Millimeter Array) program targeting a statistical sample of infrared-luminous sources associated with overdensities of massive galaxies at z>2, the Noema formIng Cluster survEy (NICE). We present the first result from the ongoing NICE survey, a compact group at z=3.95 in the Lockman Hole field (LH-SBC3), confirmed via four massive (M_star>10^10.5M_sun) galaxies detected in CO(4-3) and [CI](1-0) lines. The four CO-detected members of LH-SBC3 are distributed over a 180 kpc physical scale, and the entire structure has an estimated halo mass of ~10^13Msun and total star formation rate (SFR) of ~4000Msun/yr. In addition, the most massive galaxy hosts a radio-loud AGN with L_1.4GHz, rest = 3.0*10^25W/Hz. The discovery of LH-SBC3 demonstrates the feasibility of our method to efficiently identify high-z compact groups or forming cluster cores. The existence of these starbursting cluster cores up to z~4 provides critical insights into the mass assembly history of the central massive galaxies in clusters.Comment: 7 pages, 7 figures, submitted to A&
    corecore