135 research outputs found
A Review of Health Related Quality of Life Assessments for Patients with Lymphedema
In collaboration with Heidi Shaffer, one of the occupational therapists on staff at the MultiCare lymphedema clinic in Gig Harbor, Washington, we sought to answer the question “Which patient-reported outcome assessments are most valid and reliable in measuring health-related quality of life (HRQoL) in patients with lymphedema?” We conducted a systematic literature review to answer this question. In reviewing selected databases, 19 articles were chosen to appraise the evidence supporting psychometric properties and clinical utility of 10 HRQoL assessments used for patients with lymphedema. The Disability of the Arm, Shoulder and Hand (DASH) and Lymphedema Life Impact Scale (LLIS) assessments demonstrated stronger evidence for test-retest reliability, internal consistency, and clinical utility for use in a lymphedema practice setting in the U.S. than other assessments.
The next step was to bring the findings back to Heidi and her colleagues to answer questions they had about using recommended assessments to generate G-codes for Medicare reporting and to explore strategies that could be used to implement these recommended assessments within MultiCare’s electronic medical record (EMR) system. We provided an in-service on our findings for MultiCare’s lymphedema therapists, at which time we distributed laminated calculation cards for converting DASH scores to G-code modifiers and obtained feedback through a satisfaction survey. In addition, we met with the Director of Physical Medicine and Rehabilitation at MultiCare, Sherri Olsen, to determine the best process for embedding the LLIS and the DASH into their EMR and identify future research needs. Additional steps will include follow up on the progress and outcomes of embedding the assessments into the EMR and further research to address changes in the literature, HRQoL assessments for other diagnostic populations, and determining the efficacy and benefits of prehab treatments
Primary Vaginal Carcinoma Arising on Cystocele Mimicking Vulvar Cancer
Background: Primary vaginal carcinoma is a rare gynaecological tumour representing 1%–3% of all gynaecologic cancers. Several studies report increased vaginal cancer risk associated with genital prolapse following the occurrence of inflammatory lesions or decubitus ulcers. Case: We report the rare case of an 82-year-old woman with primary squamous cell carcinoma arising from vaginal wall prolapse. Vaginal carcinoma was suspected during gynaecological examination for vulvar bleeding. A wide local excision was performed and pathologic examination revealed a primary squamous cell carcinoma of the vagina. Conclusion: Persistent genital prolapse may be at risk for vaginal carcinoma, and cytological and a colposcopic assessments are essential to identify patients who require diagnostic biopsy
Germinal ovarian tumors in reproductive age women: Fertility-sparing and outcome
MOGCTs (malignant ovarian germ cell tumors) are rare tumors that mainly affect patients of reproductive age. The aim of this study was to evaluate the fertility and survival outcomes in young women with MOCGTs treated with fertility-sparing surgery (FSS).From 2000 to 2018, data from 28 patients of reproductive age with a diagnosis of MOGCT at the University of Bari were collected. Most received FSS, and in patients treated conservatively, the reproductive outcome and survival were investigated. Data of patient demographics, clinical presentation, oncology marker dosage, staging, type of surgery, histological examination, survival, and reproductive outcome were collected from hospital and office charts. All informed consent was obtained from all patients. The median age was 24 (range: 9-45 years). The majority of the patients had stage IIIC. Twenty-four woman received FSS consisting of unilateral ovariectomy and omentectomy, whereas only 4 women, based on their stage (IIIC), received a radical surgery (hysterectomy with bilateral adnexectomy, lymphadenectomy, and omentectomy). Our study shows that FSS in MOGCTs can produce good results both on reproductive outcomes and on survival. Indeed, in our group, there was only 1 case of exitus as result of recurrence. Furthermore, patients after FSS maintained normal ovarian function and 5 of 5 women who tried to get pregnant succeeded spontaneously. The median follow-up was 90 months (range 3-159).Conservative surgery for MOGCTs should be considered for women of reproductive age who wish to preserve fertility
Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo
WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells
Background: Development of metastases and drug resistance are still a challenge for a successful systemic treatment in breast cancer (BC) patients. One of the mechanisms that confer metastatic properties to the cell relies in the epithelial-to-mesenchymal transition (EMT). Moreover, both EMT and metastasis are partly modulated through epigenetic mechanisms, by repression or induction of specific related genes. Methods: We applied shRNAs and drug targeting approaches in BC cell lines and metastatic patient-derived xenograft (PDX) models to inhibit WDR5, the core subunit of histone H3 K4 methyltransferase complexes, and evaluate its role in metastasis regulation. Result: We report that WDR5 is crucial in regulating tumorigenesis and metastasis spreading during BC progression. In particular, WDR5 loss reduces the metastatic properties of the cells by reverting the mesenchymal phenotype of triple negative- and luminal B-derived cells, thus inducing an epithelial trait. We also suggest that this regulation is mediated by TGF\u3b21, implying a prominent role of WDR5 in driving EMT through TGF\u3b21 activation. Moreover, such EMT reversion can be induced by drug targeting of WDR5 as well, leading to BC cell sensitization to chemotherapy and enhancement of paclitaxel-dependent effects. Conclusions: We suggest that WDR5 inhibition could be a promising pharmacologic approach to reduce cell migration, revert EMT, and block metastasis formation in BC, thus overcoming resistance to standard treatments
Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target
Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological malignancy currently lacking an effective therapy. To possibly identify genetic alterations useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and Pathology tissue-chromatin immunoprecipitation sequencing experiments; the patients displayed enrichment in gene-signatures regulated by methylation and modifiable by Decitabine administration, shared common H3K27-acetylated regions and featured a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical Blastic Plasmacytoid Dendritic Cell Neoplasm mouse model, established by the CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-Azacytidine and Decitabine in controlling the disease progression in vivo
EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development
EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism
Ethical Issues in Engineering Models: An Operations Researcher’s Reflections
This article starts with an overview of the author’s personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models’ assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model’s multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling
Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars
Volcanism has been a dominant process on Mars, along with a pervasive global cryosphere. Therefore, the interaction between these two is considered likely. Terrestrial glaciovolcanism produces distinctive lithologies and alteration terrains, as well as hydrothermal environments that can be inhabited by microorganisms. Here, we provide a framework for identifying evidence of such glaciovolcanic environments during future Mars exploration, and provide a descriptive reference for active hydrothermal environments to be utilised for future astrobiological studies. Remote sensing data were combined with field observations and sample analysis that included X-ray diffraction, Raman spectroscopy, thin section petrography, scanning electron microscopy, electron dispersive spectrometer analysis, and dissolved water chemistry to characterise samples from two areas of basaltic glaciovolcanism: Askja and Kverkfjöll volcanoes in Iceland. The glaciovolcanic terrain between these volcanoes is characterised by subglacially-erupted fissure swarm ridges, which have since been modified by multiple glacial outburst floods. Active hydrothermal environments at Kverkfjöll include hot springs, anoxic pools, glacial meltwater lakes, and sulfur- and iron- depositing fumaroles, all situated within ice-bound geothermal fields. Temperatures range from 0 °C - 94.4 °C, and aqueous environments are acidic - neutral (pH 2 - 7.5) and sulfate-dominated. Mineralogy of sediments, mineral crusts, and secondary deposits within basalts suggest two types of hydrothermal alteration: a low-temperature ( 120 °C) assemblage signified by zeolite (heulandite) and quartz. These mineral assemblages are consistent with those identified at the Martian surface. In-situ and laboratory VNIR (440 – 1000 nm) reflectance spectra representative of Mars rover multispectral imaging show sediment spectral profiles to be influenced by Fe2 +/3 + - bearing minerals, regardless of their dominant bulk mineralogy. Characterising these terrestrial glaciovolcanic deposits can help identify similar processes on Mars, as well as identifying palaeoenvironments that may once have supported and preserved life
Epigenetic Analysis of KSHV Latent and Lytic Genomes
Epigenetic modifications of the herpesviral genome play a key role in the transcriptional control of latent and lytic genes during a productive viral lifecycle. In this study, we describe for the first time a comprehensive genome-wide ChIP-on-Chip analysis of the chromatin associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) genome during latency and lytic reactivation. Depending on the gene expression class, different combinations of activating [acetylated H3 (AcH3) and H3K4me3] and repressive [H3K9me3 and H3K27me3] histone modifications are associated with the viral latent genome, which changes upon reactivation in a manner that is correlated with their expression. Specifically, both the activating marks co-localize on the KSHV latent genome, as do the repressive marks. However, the activating and repressive histone modifications are mutually exclusive of each other on the bulk of the latent KSHV genome. The genomic region encoding the IE genes ORF50 and ORF48 possesses the features of a bivalent chromatin structure characterized by the concomitant presence of the activating H3K4me3 and the repressive H3K27me3 marks during latency, which rapidly changes upon reactivation with increasing AcH3 and H3K4me3 marks and decreasing H3K27me3. Furthermore, EZH2, the H3K27me3 histone methyltransferase of the Polycomb group proteins (PcG), colocalizes with the H3K27me3 mark on the entire KSHV genome during latency, whereas RTA-mediated reactivation induces EZH2 dissociation from the genomic regions encoding IE and E genes concurrent with decreasing H3K27me3 level and increasing IE/E lytic gene expression. Moreover, either the inhibition of EZH2 expression by a small molecule inhibitor DZNep and RNAi knockdown, or the expression of H3K27me3-specific histone demethylases apparently induced the KSHV lytic gene expression cascade. These data indicate that histone modifications associated with the KSHV latent genome are involved in the regulation of latency and ultimately in the control of the temporal and sequential expression of the lytic gene cascade. In addition, the PcG proteins play a critical role in the control of KSHV latency by maintaining a reversible heterochromatin on the KSHV lytic genes. Thus, the regulation of the spatial and temporal association of the PcG proteins with the KSHV genome may be crucial for propagating the KSHV lifecycle
- …