19 research outputs found

    NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes

    Get PDF
    BackgroundFully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with F-18 which is clinically the most relevant PET isotope. However, other PET isotopes, such as Ga-68 and Y-90, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of Y-90-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. Ga-68 and Y-90 have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to F-18. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes.MethodsNEMA NU 2-2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for F-18, Ga-68, and Y-90. Scatter fraction and noise equivalent count rate (NECR) tests were performed using F-18 and Ga-68. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium.Results(18)F, Ga-68, and Y-90 NEMA performance tests resulted in substantially different system characteristics. In comparison with F-18, the spatial resolution is about 1mm larger in the axial direction for Ga-68 and no significative effect was found for Y-90. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of Ga-68 in image quality measurements, where clearly lower values are obtained. For Y-90, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for Ga-68 than for F-18 and appears at higher activities.ConclusionsThe system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for Ga-68 and Y-90 compared to F-18. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods

    Detection of a glitch in the pulsar J1709-4429

    Get PDF
    We report the detection of a glitch event in the pulsar J1709−-4429 (also known as B1706−-44) during regular monitoring observations with the Molonglo Observatory Synthesis Telescope (UTMOST). The glitch was found during timing operations, in which we regularly observe over 400 pulsars with up to daily cadence, while commensally searching for Rotating Radio Transients, pulsars, and FRBs. With a fractional size of Δν/ν≈52.4×10−9\Delta\nu/\nu \approx 52.4 \times10^{-9}, the glitch reported here is by far the smallest known for this pulsar, attesting to the efficacy of glitch searches with high cadence using UTMOST.Comment: 3 pages, 1 figur

    The NANOGrav Nine-year Data Set:Astrometric Measurements of 37 Millisecond Pulsars

    Get PDF
    Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report twelve significant parallax measurements and distance measurements, and eighteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR. J1024-0719, which we discuss at length. Using the proper motions of the 37 NANOGrav pulsars in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal, and perpendicular dispersions to be 46, 40, and 24 km s(-1), respectively, in a model that allows for high-velocity outliers; or 81, 58, and 62 km s(-1) for the full population. These velocity dispersions are far smaller than those of the canonical pulsar population, and are similar to older Galactic disk populations. This suggests that millisecond pulsar velocities are largely attributable to their being an old population rather than being artifacts of their birth and evolution as neutron star binary systems. The components of these velocity dispersions follow similar proportions to other Galactic populations, suggesting that our results are not biased by selection effects

    The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Get PDF
    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background

    The Role of Binary Pulsars in Testing Gravity Theories

    Get PDF
    Radio pulsars are neutron stars (NSs) which emit collimated beams of radio waves, observed as pulses, once per rotation of the NS. A subgroup of the radio pulsars behave as highly stable clocks and monitoring the times of arrival of their radio pulses can provide an accurate determination of their positional, rotational, and orbital parameters, as well as indications on the properties of their space-time environment. In this chapter, we focus on the so-called relativistic binary pulsars, recycled NSs orbiting around a compact companion star. Some of them can be used as unique tools to test general relativity and other gravitational theories. The methodology for exploiting these sources as laboratories for gravity theories is first explained and then some of the most relevant recent results are reviewed. <P /

    NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes

    No full text
    BACKGROUND: Fully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with 18F which is clinically the most relevant PET isotope. However, other PET isotopes, such as 68Ga and 90Y, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of 90Y-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. 68Ga and 90Y have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to 18F. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes. METHODS: NEMA NU 2-2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for 18F, 68Ga, and 90Y. Scatter fraction and noise equivalent count rate (NECR) tests were performed using 18F and 68Ga. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium. RESULTS: 18F, 68Ga, and 90Y NEMA performance tests resulted in substantially different system characteristics. In comparison with 18F, the spatial resolution is about 1 mm larger in the axial direction for 68Ga and no significative effect was found for 90Y. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of 68Ga in image quality measurements, where clearly lower values are obtained. For 90Y, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for 68Ga than for 18F and appears at higher activities. CONCLUSIONS: The system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for 68Ga and 90Y compared to 18F. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods.status: publishe

    LOFAR VLBI studies at 55 MHz of 4C 43.15, az= 2.4 radio galaxy

    Get PDF
    The correlation between radio spectral index and redshift has been exploited to discover high redshift radio galaxies, but its underlying cause is unclear. It is crucial to characterise the particle acceleration and loss mechanisms in high redshift radio galaxies to understand why their radio spectral indices are steeper than their local counterparts. Low frequency information on scales of ∼\sim1 arcsec are necessary to determine the internal spectral index variation. In this paper we present the first spatially resolved studies at frequencies below 100 MHz of the z=2.4z = 2.4 radio galaxy 4C 43.15 which was selected based on its ultra-steep spectral index (α<−1\alpha < -1; Sν∼ναS_{\nu} \sim \nu^{\alpha} ) between 365 MHz and 1.4 GHz. Using the International Low Frequency Array (LOFAR) Low Band Antenna we achieve sub-arcsecond imaging resolution at 55 MHz with VLBI techniques. Our study reveals low-frequency radio emission extended along the jet axis, which connects the two lobes. The integrated spectral index for frequencies << 500 MHz is -0.83. The lobes have integrated spectral indices of -1.31±\pm0.03 and -1.75±\pm0.01 for frequencies ≥\geq1.4 GHz, implying a break frequency between 500 MHz and 1.4 GHz. These spectral properties are similar to those of local radio galaxies. We conclude that the initially measured ultra-steep spectral index is due to a combination of the steepening spectrum at high frequencies with a break at intermediate frequencies.Comment: 14 pages; 9 figures; 4 tables; Accepted for publication in MNRA
    corecore