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Abstract

Background: Fully integrated PET/MR systems are being used frequently in clinical
research and routine. National Electrical Manufacturers Association (NEMA) characterization
of these systems is generally done with 18F which is clinically the most relevant PET isotope.
However, other PET isotopes, such as 68Ga and 90Y, are gaining clinical importance as
they are of specific interest for oncological applications and for follow-up of 90Y-based
radionuclide therapy. These isotopes have a complex decay scheme with a variety of
prompt gammas in coincidence. 68Ga and 90Y have higher positron energy and, because of
the larger positron range, there may be interference with the magnetic field of the MR
compared to 18F. Therefore, it is relevant to determine the performance of PET/MR for these
clinically relevant and commercially available isotopes.

Methods: NEMA NU 2–2007 performance measurements were performed for
characterizing the spatial resolution, sensitivity, image quality, and the accuracy of
attenuation and scatter corrections for 18F, 68Ga, and 90Y. Scatter fraction and noise
equivalent count rate (NECR) tests were performed using 18F and 68Ga. All phantom
data were acquired on the GE Signa integrated PET/MR system, installed in UZ
Leuven, Belgium.

Results: 18F, 68Ga, and 90Y NEMA performance tests resulted in substantially different
system characteristics. In comparison with 18F, the spatial resolution is about 1mm larger
in the axial direction for 68Ga and no significative effect was found for 90Y. The impact of
this lower resolution is also visible in the recovery coefficients of the smallest spheres of
68Ga in image quality measurements, where clearly lower values are obtained. For 90Y, the
low number of counts leads to a large variability in the image quality measurements. The
primary factor for the sensitivity change is the scale factor related to the positron emission
fraction. There is also an impact on the peak NECR, which is lower for 68Ga than for 18F
and appears at higher activities.

Conclusions: The system performance of GE Signa integrated PET/MR was substantially
different, in terms of NEMA spatial resolution, image quality, and NECR for 68Ga and 90Y
compared to 18F. But these differences are compensated by the PET/MR scanner
technologies and reconstructions methods.
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Background
The Signa PET/MR has MR-compatible silicon photomultiplier (SiPM) detector tech-

nology characterized by a superior light detection as compared to conventional PET
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technology [1–3]. The advantage of SiPMs versus avalanche photodiodes (APDs) is a

faster response, enabling the combination of excellent time-of-flight (TOF) PET (close

to 400 ps) imaging with MR scanning. The smaller detector bore and long axial extent

(25 cm) of the PET ring (in comparison to state-of-the-art PET/CT) result in a superior

sensitivity of 21 cps/kBq, thus allowing a lower PET tracer dosing besides the evident

dose reduction by omitting the CT [4]. Hybrid PET/MR is a relatively new multimodal-

ity imaging technique and offers the potential for combined structural, functional, and

molecular imaging assessment of a wide variety of oncologic, neurologic, cardiovascu-

lar, and musculoskeletal conditions [5, 6]. However, the challenges beyond those of a

technical nature remain for PET/MR imaging, including the standardization of appro-

priateness criteria, image acquisition parameters, and clinically relevant and as well

commercially available isotopes.

With PET becoming more widely used, the transport logistics have allowed faster ship-

ments of radioisotopes to small imaging centers. The majority of PET studies in clinical

routine are still being performed with 18F, because of its physical properties combined

with efficient transportation logistics which widely increase its availability. The same holds

for 68Ga and 90Y, of which the use is not dependent on the availability of a cyclotron.

However, the physical properties of the PET radioisotopes are quite different from 18F. 18F

almost exclusively decays via positron emission (96.8%) and with a relatively low max-

imum energy of the positron of 0.6335MeV. The maximum and mean range of 18F are

equal to 2.4 and 0.6mm. The other 3% of decays is via electron capture [7].

The use of the generator-based isotope 68Ga has seen a steady increase in the last

years. It is obtained from a 68Ge/68Ga generator obviating the need for a cyclotron on

site. One generator will typically be used for about 1 year [8] and the equilibrium be-

tween 68Ga and 68Ge is re-attained rapidly enough to allow multiple radiotracers prepa-

rations a day. 68Ga is used for labeling both small compound and macromolecules,

such as 68Ga-PSMA targeting the prostate-specific membrane antigen or 68Ga-labeled

tracers targeting the somatostatin receptor expressed by neuroendocrine tumors, which

are considered as key applications for combined PET/MR [9–11]. 68Ga is not a pure

positron emitter and has a more complex decay scheme than 18F. Non-pure isotopes

emit additional gammas that may even directly fall into the energy window accepted by

the PET scanner. These high-energy gammas have some probability of generating spuri-

ous coincidences after scattering in the patient or via e+/e− pair production in the de-

tector or the patient [12–14]. In 87.8% of the decays, 68Ga will emit a positron with a

maximum energy of 1.899MeV and a mean energy of 0.89MeV with a half-life t1/2 =

67.6 min. The much higher energy of the positron emission (compared to 18F) leads to

an increased maximum and mean range of 8.9 and 2.9 mm. It also emits additional

gammas of 578.52 keV (0.034), 805.83 keV (0.094), 1077.35 keV (3.22), 1261.08 keV

(0.094), and 1883.16 keV (0.137).

In the same way, 90Y has rapidly gained attention as one of the most widely used

therapeutic radioisotope in nuclear medicine. 90Y is used in radioembolization of liver

tumors. Tiny glass or resin beads called microspheres are administered in the hepatic

artery and are transported into the blood vessels at the tumor site. The spheres get

physically trapped and the radioactive isotope 90Y delivers a high dose (via electrons) of

radiation to the tumor. Several centers also use their PET system to image the thera-

peutic isotope 90Y. Studies have shown that 90Y-DOTA and 90Y-DTPA have potential in
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intra-vascular radionuclide therapy and 90Y can simultaneously work as an imaging

agent and a therapeutic [15–17]. 90Y is mainly a β− emitter with a very small branching

ratio for positron production. In 0.003186% of the decays, there will be the emission of

an e+/e− pair at 1.76MeV. As the transition energy is 1.76MeV, it remains 738 keV kin-

etic energy to be split between the electron and the positron in order to conserve the

null momentum. With a half-life of 64.1 h, 90Y produces a weak but useable PET signal

[7, 18], as illustrated by several clinical and phantom studies.

Furthermore, these isotopes may be of particular interest for PET/MR in prostate cancer,

liver studies, and follow-up of radionuclide therapy. Therefore, it is relevant to determine

the performance of PET/MR for these clinically relevant and commercially available iso-

topes in order to ensure correct functionality and optimal image quality. For PET scanners

in particular, the National Electrical Manufacturers Association (NEMA) has defined a

standard to assess the performance of the tomographic system, which is widely accepted by

manufacturers [19]. The NEMA NU 2–2007 standard identifies 18F as the radionuclide to

be used for all tests. Due to factors such as positron range, interference with magnetic field,

and non-pure emissions with additional gammas, the results may be different when non-

conventional radioisotopes, such as 68Ga and 90Y [20–22], would be used. The aim of this

study is to assess the impact of using different PET isotopes for the NEMA tests perform-

ance evaluation of the GE Signa integrated PET/MR. NEMA NU 2–2007 performance

measurements for characterizing spatial resolution, sensitivity, image quality, accuracy of at-

tenuation and scatter corrections (IQ), and noise equivalent count rate (NECR) were per-

formed using 18F and 68Ga. For 90Y, all tests except NECR tests were also performed.

Methods
All phantom experiments were performed on the MP24 version of the GE Signa integrated

PET/MR whole-body hybrid system, installed in UZ Leuven, Belgium. The MR component

of the hybrid system consists of a 3.0 Tesla static magnetic field, a radiofrequency (RF)

transmit body coil, and a gradient coil system which provide a maximum amplitude of 44

mT/m and a maximum slew rate of 200 T/m/s. The PET component is comprised of 5 de-

tector rings, each consisting of 28 detector blocks. Total axial FOV is equal to 25 cm. Table 1

contains a summary of important design and performance parameters.

The PET detectors are based on a lutetium-based scintillator (LYSO) readout with

MR-compatible silicon photomultiplier technology [3]. Before NEMA testing, a well

counter calibration scan was performed with 18F in a uniform cylindric phantom. As a

recommended calibration, the activity injected was measured using two dose calibrators

(Capitec–CRC-55tR) with settings for different isotopes. The following measurements

were performed according to the NEMA NU 2–2007 protocol.

Spatial resolution

A high activity concentration of approximately 200MBq/ml was used to generate point

sources (drop of activity raised in a capillary). In total, more than 500,000 counts were ac-

quired. Both axial and transaxial resolution were measured at two different positions in the

axial z-direction: in the central position of the FOV and at a position a quarter of the total

axial FOV away from the center. The source point position was adjusted until all x-y-z

values fall between ± 2mm from the required position. At each of these axial positions, the
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resolution was measured centrally in the FOV (1 cm horizontal offset relative to the center)

as well as 10 cm horizontal offset and 10 cm vertical offset relative to the center. Data was

reconstructed with filtered back-projection. The full width at half maximum (FWHM) and

full width at tenth of maximum (FWTM) of the point source response function in all three

directions were determined by one-dimensional response functions along profiles though

the image volume in three orthogonal directions.

Sensitivity

Sensitivity was tested with the NEMA sensitivity phantom, composed of a line source

with 5 different thicknesses of aluminum. The 70-cm-long line source was filled with a

volume of approximately 2.3 ml. The activity level was equal to 10.7MBq and 8.7 MBq

at scan start for 18F and 68Ga. For 90Y, the activity level was adjusted to 444.9 MBq, to

compensate for the low positron abundance and to keep the scan time acceptable.

Using this activity, the total number of counts collected was above 2 million counts.

This measurement was done in the center of the FOV and at 10 cm away from the cen-

ter of the FOV. Data was collected for a period of time to ensure that at least 10.000

trues per slice were collected. The system sensitivity was calculated by fitting the

decay-corrected count rate of each acquisition to an exponential and extrapolating the

value for a hypothetical acquisition with no aluminum tubes over the source (no at-

tenuation). Axial sensitivity profiles were generated by calculating the sensitivity of each

slice for the transaxially centered data acquisitions that used only the smallest

aluminum tube.

Scatter fraction, noise equivalent count rate (NECR)

A 70-cm-long plastic tube line source (3.2 mm in inner diameter) was filled with a cali-

brated activity of 905MBq and 871MBq in a 5.0 ml of solution for 18F and 68Ga,

Table 1 Design and PET performance specifications

PET

Axial FOV 25 cm

Transaxial FOV 60 cm

Photodetector SiPM

Scintillator LYSO

Crystal element size 25 × 4.0 × 5.3 mm3

Electronics Integrated in-bore

Time resolution < 400 ps

Energy window 425–650 keV

Coincidence timing window 4.57 (± 2.29 ns)

NEMA NU 2–2007 PET testa

Sensitivity 22.5 cps/kBq

Peak NECR 212.2 kcps

Activity at Peak NECR 18.1 kBq/ml

Scatter Fraction at Peak NECR 44.1%

Spatial Resolution (Axial) (5.53–6.95) mm at 1 and 10 cm
aGE healthcare acceptance tests [23]
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respectively. The line source was inserted 4.5 cm below the central axis of a 70-cm-

long cylindrical polyethylene test phantom. The center of the NEMA scatter phantom

was positioned at the FOV center and the data were acquired overnight. After twenty-

nine frames of data were extracted from the list mode data, NEMA specifications were

used to derive the trues, randoms, scatter, and NECR from the prompts dataset in each

frame. The results were plotted as a function of effective activity concentration. In

addition, the accuracy of count losses and randoms corrections was determined by ex-

trapolating image results from low count rates.

Image quality, accuracy of attenuation, and scatter corrections

Image quality was measured by acquiring the NEMA image quality phantom. A 5-cm-

diameter cylindrical insert filled with Styrofoam pellets was positioned in the center of the

phantom to simulate lung tissue. The warm background volume of the phantom was filled

with an activity concentration of 5.3 kBq/ml. Four hot spheres with diameters of 10, 13, 17,

and 22mm were filled with an activity concentration 4 times the background for 18F and
68Ga. For 90Y, a higher 8:1 ratio was used since typical contrasts in liver therapies are nor-

mally higher than 4:1. The two cold spheres with diameters of 28 and 37mm were filled

with water (except for the 90Y image quality test, in which all of the spheres were filled with

an 8:1 ratio of activity).

Background activity from outside the scanner FOV was generated by a line source

inserted into the same cylindrical phantom as used in the scatter fraction, count losses, and

randoms measurement. It contains 116MBq solution of the isotope used in the measure-

ment and was placed on the bed axially adjacent to the body phantom. The percentage

contrast recovery for the hot and cold spheres and the background variability were calcu-

lated, as defined in the NEMA standard. The percentage contrast recovery (in an ideal

case = 100%) is determined for each hot sphere j by

QS; j ¼
CS; j=CB; j
� �

−1
aS=aBð Þ−1 ∙100 %½ � ð1Þ

Where CS, j is the average counts of regions of interest (ROIs) on the spheres. These

are positioned in the transverse image slice that contains the centers of the spheres. CB,

j represents the average counts in the background ROI. The terms aS and aB are activ-

ity concentration in the hot spheres and background, respectively.

The phantom has also 2 large spheres which are not filled with isotope. For each

nonradioactive sphere j, the percentage contrast recovery QC, j was calculated by

QC; j ¼ 1−
CC; j

CB; j

� �
∙100 %½ � ð2Þ

Where CC, j and CB, j are average counts in the ROI for sphere j and average of all

background ROI counts for sphere j.

In order to determine the percentage background variability Nj as a measure for the

image noise for sphere j (in an ideal case = 0%), the following equation was used:

N j ¼ SDj

CB; j

� �
∙100 %½ � ð3Þ

SDj is the standard deviation of the background ROI counts for sphere j.
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In addition, the central cylinder of the phantom did not contain any activity, and the

relative error was calculated to determine the accuracy of scatter and attenuation cor-

rection as follows:

ΔClung;i ¼ Clung;i

CB;i
∙100 %½ � ð4Þ

Where ΔClung, i is the relative error per percentage units for each slice i, Clung, i is the

average counts in the lung insert ROI, and CB, i is the average of the 60 (37 mm) back-

ground ROIs drawn for the image quality analysis [19].

Image-quality phantom images

The phantom data were obtained with a 10-min scan for 18F and 68Ga acquisitions. For 90Y,

a long 15-h scan time and a shorter 30min representing a clinical acquisition were obtained

using list mode data selection. The image quality phantom was reconstructed in a volume

of 89 images using ordered subset expectation maximization reconstruction algorithm

(OSEM) including time-of-flight (TOF) and scatter corrections with 2, 3, and 4 iterations of

28 subsets. The scatter correction for 68Ga and 90Y were defined as dirty emitters to account

for the gamma. These isotopes allow an additional fitting parameter in the scatter tail scal-

ing process [22]. All reconstruction schemes were performed using a matrix size of 256 ×

256 with 2.08 × 2.08 × 2.78-mm3 voxel size, with 2mm and no post-smoothing with and

without point spread function (PSF). The GE PET/MR uses a system-generated approach

that includes a CT-based template attenuation correction for the NEMA IQ phantom.

Results
Spatial resolution

The spatial resolution (FBP reconstruction) results for each isotope are presented in Table 2.

As a double check, the 18F-measured values (at the same equipment across all isotopes)

were used as a reference for all measurements performed on the GE Signa PET/MR. The

FWHM radial and tangential resolution is slightly degraded for 68Ga and 90Y. In comparison

with 18F-measured values, the relative differences were 17.8% and − 1.3% at 1 cm and 27.9%

and 3.5% at 10 cm in the axial direction for 68Ga and 90Y, respectively. With regards to the

FWTM in the axial resolution at 1 and 10 cm off-center, the percentage difference relative

to 18F values were 70%, and 3.3% at 1 cm and 57.3% and 12.3% at 10 cm off-center for 68Ga

and 90Y, respectively.

Sensitivity

Sensitivity test results for 18F, 68Ga, and 90Y are 21.8, 20.1, and 0.653·10−3 cps/kBq at the

center position and 21.2, 19.7, and 0.667·10−3 cps/kBq at 10 cm off-center. Table 3 gives the

measured average sensitivity values at the transaxial center and 10 cm off-center. Also, data

are compared to the average 18F measured and theoretical values. These estimated values

were calculated based on the difference in branching ratio relative to the 18F. The sensitivity

values are in line with the lower positron fraction of the isotopes.

Scatter fraction, noise equivalent count rate (NECR)

The peak NECR, the corresponding activity concentration and scatter fraction at peak

NECR, is presented in Table 4 and Fig. 1 for 18F and 68Ga. Table 4 summarizes the
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comparison between 18F and 68Ga in terms of scatter fraction at peak NECR, peak

NECR, activity concentration at peak NECR, and maximum absolute error.

For 18F, the NECR has a maximum of 216.8 kcps at an activity concentration of 18.6

kBq/ml. At the peak, the scatter fraction was 43.3%, comparable to the results obtained

on three separate scanners installed in three institutions [23].

For 68Ga, the trues, random, and scatter count rates at the same activity concentra-

tion are lower in comparison to 18F. The measured NECR peak for 68Ga was also

clearly lower and peaks at 205.6 kcps. This peak is obtained at a higher activity concen-

tration of 20.4 kBq/ml. The scatter fraction at peak NECR was below 1% lower com-

pared to 18F measured in our institution (Fig. 1a and Table 4). After the full 15-h

acquisitions (for both isotopes), the maximum absolute value of the slice error was

3.0% and 6.0% for 18F and 68Ga.

Image quality, accuracy of attenuation, and scatter corrections

The results for contrast recovery versus sphere diameter of the image quality phantom

are shown in Fig. 2. In Fig. 2 a, the contrast recovery of the reconstructed image of the

phantom without PSF and post-smooth filter was lower for 68Ga and 90Y as shown in

Table 2 Spatial resolution tests
18F 68Ga 90Y

FWHM (mm)

At 1 cm

Transversea 4.05 4.18 4.42

Axial 6.08 7.16 6.00

At 10 cm

Radial 5.75 5.80 5.79

Tangential 4.38 4.6 4.44

Axial 6.85 8.76 7.09

FWTM (mm)

At 1 cm

Transversea 8.62 8.68 9.02

Axial 11.97 20.35 12.36

At 10 cm

Radial 10.68 10.70 10.78

Tangential 8.61 8.78 8.84

Axial 14.01 22.04 15.73
aTransverse (radial and tangential values are averaged together)

Table 3 Sensitivity test results: comparison between the average sensitivity measured and theoretical
values relative to 18F

Isotope Branching ratio Average sensitivity measured (cps/kBq) Theoretical values (cps/kBq)a

18F 0.968 21.5 –
68Ga 0.879 19.9 19.5
90Y 31.86·10−6 0.6 6 · 10−3 0.71·10−3

aValues relative to 18F-measured value
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the relative difference to 18F-measured values. The contrast recovery increased when

compared using TOF, PSF, and post-smooth filter, as showed in Fig. 2 b.

The background variability and the lung region relative error for 18F, 68Ga, and 90Y

are shown in Table 5 for different sphere sizes. 90Y has a much lower quality and suf-

fers from low counts, for most spheres the background variability. The lung error is

clearly higher than for 18F and 68Ga. This is also visually confirmed by the clinical re-

constructions (30 min acquisition) in Fig. 3.

When compared in terms of number of iterations (Fig. 3), the noise level increased

with increasing of the number of iterations for all isotopes.

Discussion
The aim of this study was to assess the impact of using different PET isotopes for the

NEMA tests performance evaluation of the GE Signa integrated PET/MR. The per-

formance and characteristics of PET/MR have been investigated based on NEMA NU

2–2012 with regard to 18F [20, 21, 23], but not for different PET isotopes. Furthermore,

the NEMA NU 22012 version is only slightly different from the 2007 version; the most

substantial changes are relatively minor, mostly designed to make the test easier to con-

duct, mere reproducible, or more clearly defined [19]. In this study, we conveniently

choose to evaluate the PET/MR using NEMA NU 2–2007 because GE Healthcare has

reported their acceptance testing on this version [24].

The system performance of the GE Signa integrated PET/MR was substantially differ-

ent, in terms of NEMA spatial resolution and image quality for 68Ga and 90Y PET im-

aging test as compared to 18F. In the transverse plane, the magnetic field reduces the

effective positron range, and the dominant factor on spatial resolution seems to be the

detector pixel size and the transverse resolution is therefore comparable with the result

Table 4 Scatter Fraction, peak NECR, and source activity test results for 18F and 68Ga

Scan type Unit Measured values

Isotopes 18F 68Ga

Scatter fraction at peak NECR % 43.3 42.9

Peak NECR kcps 216.8 205.6

Activity at peak NECR kBq/ml 18.60 20.40

Maximum absolute error % 3.0 6.0

A B

Fig. 1 NEMA counting rate measurements: count rates (a) and scatter fraction (b) vs activity concentration
for the both isotopes 18F and 68Ga. Notice than peak of the NECR curve (a) of 68Ga is lower (at clinical
NECR) and appears at higher activity concentrations
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of 18F. This effect was confirmed by other studies with simulations for different iso-

topes and field strengths [25, 26]. The main magnetic field along the axial direction

leads to an increased positron range in this direction and a pronounced reduction of

the range in the transversal plane for high-energy positrons. On the other hand, the

positron range effect of the magnetic field is not significant for 18F [27] and no signifi-

cative effect was found for 90Y. In agreement with these studies, the FWHM difference

relative to 18F-measured values were 17.8% and − 1.3% at 1 cm and 27.9% and 3.5% at

10 cm off-center in the axial direction for 68Ga and 90Y, respectively, as shown in

Table 2. However, the NEMA spatial resolution test is designed to characterize the de-

tector, rather than the isotope which leads to limitations to account the effect of mag-

netic field on positron range on the transaxial resolution measurements. The capillary

A B

Fig. 2 Contrast recovery of TOF-OSEM 4 iteration and 28 subsets as a function of sphere size for 10 min (18F
and 68Ga) and 15 h (90Y) acquisition times and different isotopes. The cold and radioactive spheres are
indicate using open (18F and 68Ga) and filled circles (90Y), respectively. Contrast recovery and percentage
difference relative to 18F for each sphere size: a without PSF and post-smoothing filter and b with PSF and
2mm post-smoothing filter

Table 5 Background variability and lung error of TOF-OSEM 4 iteration and 28 subsets image
reconstructed, with and without PSF and 2mm post-smooth filter for 18F, 68Ga, and 90Y respectively

TOF-OSEMa TOF-PSF-OSEM 2mm
18F 68Ga 90Y 18F 68Ga 90Y

Background variability [%]

10mm 6.1 7.5 9.0 7.4 7.2 8.6

13mm 5.0 5.8 7.9 6.2 6.0 7.7

17mm 4.2 4.4 7.0 5.0 4.7 6.9

22mm 3.3 3.3 6.3 4.0 3.5 6.2

28mm 3.1 2.7 5.9 3.6 2.6 5.7

37mm 2.7 2.1 4.9 3.0 2.0 4.7

Lung error [%] 1.6 1.1 6.4 1.4 1.0 4.3
a4 iterations and 28 subsets

Caribé et al. EJNMMI Physics            (2019) 6:11 Page 9 of 13



is very small, and any positron that escapes the capillary is not accounted for in the

measurements. In addition, axially, the annihilation could occur in the tube-sealing

compound and beyond that, the axial test is slightly poor due to the rebinning process

and larger pixel size in the z-axis.

The NEMA image quality test was also substantially different in the measured con-

trast recovery, as shown in Fig. 2. It seems that the inferior resolution also affects the

contrast recovery of the radioactive spheres in the NEMA quality phantom for 68Ga

and 90Y. While the results look visually (Fig. 3) similar between 18F and 68Ga for TOF-

OSEM without resolution modeling and post-smooth filter, there is (Fig. 2a) a clearly

lower contrast recovery for the smaller spheres in 68Ga and also lower contrast recov-

ery in 90Y, which is probably caused by the increased positron range and loss in reso-

lution. A similar approach using different PET isotopes in a brain phantom measured

at different field strengths was conducted by Shah et al. [27]. The contrast of the recon-

structed image of the brain phantom filled with 68Ga was significantly affected by the

magnetic field in the axial direction more than 18F (low-energy positron emitter). How-

ever, errors in scatter correction and the use of different sphere to background ratios

might have influenced these results [3, 23, 28, 29]. A low-frequency offset of the data

makes the images appear to have more or less contrast recovery. And different ratios

lead to different contrast recovery. This can explain the crossing of the 90Y curve (ratio

8:1) in Fig. 2.

With regards to noise level and the average lung residual error (Table 5), the results

were comparable between 18F and 68Ga, but for 90Y, the background variability and the

lung error are clearly higher than for 18F and 68Ga, which is also visually seen (15 h and

30min acquisition) in Fig. 3. However, when comparing the reconstructed images using

resolution modeling and 2mm post-smooth Gaussian filter to reduce the noise, the

contrast recovery increased with acceptable noise level, as shown in Figs. 2b and 3b. Al-

though high-energy positron emitters are affected by the field strengths, recent devel-

opments in reconstruction methods including dedicated positron range correction have

successfully corrected this effect [30]. A new Bayesian penalized likelihood reconstruc-

tion algorithm which uses a block sequential regularized expectation maximization as

A B

Fig. 3 Axial slices of the phantom reconstructed using TOF-OSEM for 2, 3, and 4 iterations and 28 subsets
for different acquisition times and different isotopes: a without PSF and post-smoothing filter and b with
PSF and 2mm Gaussian filter
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an optimizer (including TOF and PSF) was introduced in the last few years by GE

Healthcare (Q.Clear) on their PET scanners in order to improve clinical image quality.

Unlike traditional OSEM reconstruction, which increases the noise with the number of

iterations (Fig. 3), this algorithm improves image quality by controlling noise amplifica-

tion during image reconstruction [31].

The mean sensitivity results shown in Table 3 are in line with theoretical values as

expected for 68Ga and 90Y test. The primary factor for the sensitivity change is the scale

factor related to the positron emission fraction (96.7%, 87.9%, and 0.003186% for 18F,
68Ga, and 90Y, respectively). The low branching ratio of 90Y explains the substantial

quality difference of the reconstructed transverse image quality phantom as compared

with 18F and 68Ga images, as shown in Fig. 3. In several design factors (Table 2) includ-

ing Compton scatter recovery [31, 32], the longer axial FOV and reduced detector ring

diameter lead to higher count rates and an increased sensitivity, both in stand-alone

operation and with simultaneous MR image acquisition [33].

NEMA count rate performance and accuracy measurements summarized in Table 4

and Fig. 1a suggest that the scanner provides excellent accurate quantitative measure-

ments and utilizes effective randoms and dead time correction methods for 18F [23].

For 68Ga, the scatter fraction at NECR peak (Table 4 and Fig. 1b) was slightly lower

compared to 18F measured in our institution and the GE test. This is primarily due to

1.2% (1.883MeV) fraction of 68Ga that decays by βþ2 can result in a small prompt

gamma (1.077MeV) [12–14] contamination into the PET data. The prompt gammas of
68Ga can directly fall into the energy window and accepted by the PET scanner. This

happens when the 1.077MeV scatters in the phantom and generates an energy falling

in the main energy window. In this case, there will be a coincidence with a true 511

keV resulting from the same decay [18]. Contributions in which only the gamma is de-

tected would add to randoms which does not affect the calculation for scatter fraction.

The 68Ga NECR test was clearly lower than measured for 18F and appears at a slightly

higher activity concentration (Fig. 1a). The lower peak NECR can be explained by the add-

itional 1.077MeV gamma which leads to additional detections increasing the deadtime of

the detector blocks. These can also lead to additional randoms or scatter when they lose

enough energy for falling into the energy window. However, the effect from these prompt-

gammas is clearly very small from a scatter fraction perspective and concerning for all ac-

tivity concentration values below NECR (Table 4), and the maximum absolute value of

the slice error is 2.9% and 6.0% for 18F and 68Ga, respectively. There is also no appreciable

impact in the measured residual activity of the lung insert in the IQ phantom (Table 5).

In summary, the overall GE Signa PET/MR system performance with TOF capability

based on SiPM detectors, shows substantially different system characteristics for each

of these commercially available isotopes. However, the NEMA spatial resolution test is

designed to characterize the detector, rather than the isotope, which needs to be

adapted in order to well account for the effect of magnetic field on positron range on

the transaxial resolution measurements. The variety of prompt gammas in coincidences

of these isotopes and the interference of the MR field on positron range, however, seem

to have been compensated by the PET scanner technologies, which, in combination

with recently developments in reconstruction methods (regularized TOF OSEM and

PSF), lead to a comparable noise equivalent count rate and a good scatter fraction.
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Conclusions
NEMA NU 2–2007 performance measurements using 18F, 68Ga, and 90Y resulted in

substantially different system characteristics, specifically in terms of spatial resolution

and recovery coefficients of the image quality measurements. NEMA spatial resolution

test needs to be adapted in order to correctly account for the difference in positron

range in the transaxial resolution measurements. And when NEMA image quality test

is compared using TOF-OSEM-PSF and post-smooth gaussian filter, the contrast recov-

ery increased with acceptable noise level. The primary factor for the sensitivity change

can be explained by the scale factor related to the positron emission fraction of the iso-

topes. Scatter fraction and NECR differences between the 18F and 68Ga are relatively

small: for 68Ga, the peak NECR is lower and appears at higher activity concentrations.

The maximum absolute value of the slice error is 2.9% and 6.0% for 18F and 68Ga, re-

spectively. These performance results are compensated by the PET scanner technolo-

gies and reconstructions methods.
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