9 research outputs found

    Design of Packaging Vents for Cooling Fresh Horticultural Produce

    No full text
    ReviewThis review focuses on the design of vents in packages used for handling horticulture produce. The studies on vent designs that are conducted to obtain fundamental understanding of the mechanisms by which different parameters affect the rate and homogeneity of the airflow and the cooling process are presented. Ventilated packages should be designed in such a way that they can provide a uniform airflow distribution and consequently uniform produce cooling. Total opening area and opening size and position show a significant effect on pressure drop, air distribution uniformity and cooling efficiency. Recent advances in measurement and mathematical modelling techniques have provided powerful tools to develop detailed investigations of local airflow rate and heat and mass transfer processes within complex packaging structures. The complexity of the physical structure of the packed systems and the biological variability of the produce make both experimental and model-based studies of transport processes challenging. In many of the available mathematical models, the packed structure is assumed as a porous medium; the limitations of the porous media approach are evident during vented package design studies principally when the container-to-produce dimension ratio is below a certain value. The complex and chaotic structure within horticultural produce ventilated packages during a forced-air precooling process complicates the numerical study of energy and mass transfer considering each individual produce. Future research efforts should be directed to detailed models of the vented package, the complex produce stacking within the package, as well as their interaction with adjacent produce, stacks and surrounding environment. For the validation of the numerical models, the development of better experimental techniques taking into account the complex packaging system is also very important. © 2012 Springer Science+Business Media, LLC

    Designing Mechanical Properties of 3D Printed Cookies through Computer Aided Engineering

    No full text
    Additive manufacturing or 3D printing can be applied in the food sector to create food products with personalized properties such as shape, texture, and composition. In this article, we introduce a computer aided engineering (CAE) methodology to design 3D printed food products with tunable mechanical properties. The focus was on the Young modulus as a proxy of texture. Finite element modelling was used to establish the relationship between the Young modulus of 3D printed cookies with a honeycomb structure and their structure parameters. Wall thickness, cell size, and overall porosity were found to influence the Young modulus of the cookies and were, therefore, identified as tunable design parameters. Next, in experimental tests, it was observed that geometry deformations arose during and after 3D printing, affecting cookie structure and texture. The 3D printed cookie porosity was found to be lower than the designed one, strongly influencing the Young modulus. After identifying the changes in porosity through X-ray micro-computed tomography, a good match was observed between computational and experimental Young’s modulus values. These results showed that changes in the geometry have to be quantified and considered to obtain a reliable prediction of the Young modulus of the 3D printed cookies

    Multiscale modeling in food engineering

    No full text
    Since many years food engineers have attempted to describe physical phenomena such as heat and mass transfer that occur in food during unit operations by means of mathematical models. Foods are hierarchically structured and have features that extend from the molecular scale to the food plant scale. In order to reduce computational complexity, food features at the fine scale are usually not modeled explicitly but incorporated through averaging procedures into models that operate at the coarse scale. As a consequence, detailed insight into the processes at the microscale is lost, and the coarse scale model parameters are apparent rather than physical parameters. As it is impractical to measure these parameters for the large number of foods that exist, the use of advanced mathematical models in the food industry is still limited. A new modeling paradigm - multiscale modeling - has appeared that may alleviate these problems. Multiscale models are essentially a hierarchy of sub-models which describe the material behavior at different spatial scales in such a way that the sub-models are interconnected. In this article we will introduce the underlying physical and computational concepts. We will give an overview of applications of multiscale modeling in food engineering, and discuss future prospects. (C) 2012 Elsevier Ltd. All rights reserved

    Control system for forced-air cooling of horticultural products Sistema de controle para o resfriamento com ar forçado de produtos hortícolas

    Get PDF
    This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.<br>Este trabalho consiste no estudo da implementação de um controlador clássico utilizando o método de sintonia denominado por Controle de Modelo Interno, visando à redução do consumo de energia elétrica que decorra na adequada relação entre este consumo e o tempo de resfriamento do processo de resfriamento com ar forçado de produtos hortícolas. Para isto, o sistema supervisório instalado manipulou a variável de frequência do sinal de alimentação do motor de indução trifásico do exaustor (módulo de ar forçado), para acelerar ou desacelerar a perda de calor do produto a ser resfriado por intermédio da variação da vazão de ar que perpassava a massa deste produto. Obteve-se como resultado uma redução no consumo de energia elétrica de 64% e um acréscimo de apenas 8% no tempo de resfriamento para o sistema utilizando um controle proporcional e integral associado ao método de sintonia promovido por Controle de Modelo Interno, quando comparado ao sistema em seu funcionamento nominal. Esta estratégia de controle é passível de ser implementada diretamente em alguns modelos de inversores de frequência, sem a necessidade de compra de um computador ou controlador lógico programável para executar o aplicativo dedicado, tornando-o mais viável economicamente
    corecore