1,288 research outputs found
Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241
The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241
Canonical Particle Acceleration in FRI Radio Galaxies
Matched resolution multi-frequency VLA observations of four radio galaxies
are used to derive the asymptotic low energy slope of the relativistic electron
distribution. Where available, low energy slopes are also determined for other
sources in the literature. They provide information on the acceleration physics
independent of radiative and other losses, which confuse measurements of the
synchrotron spectra in most radio, optical and X-ray studies. We find a narrow
range of inferred low energy electron energy slopes, n(E)=const*E^-2.1 for the
currently small sample of lower luminosity sources classified as FRI (not
classical doubles). This distribution is close to, but apparently inconsistent
with, the test particle limit of n(E)=const*E^-2.0 expected from strong
diffusive shock acceleration in the non-relativistic limit. Relativistic shocks
or those modified by the back-pressure of efficiently accelerated cosmic rays
are two alternatives to produce somewhat steeper spectra. We note for further
study the possiblity of acceleration through shocks, turbulence or shear in the
flaring/brightening regions in FRI jets as they move away from the nucleus.
Jets on pc scales and the collimated jets and hot spots of FRII (classical
double) sources would be governed by different acceleration sites and
mechanisms; they appear to show a much wider range of spectra than for FRI
sources.Comment: 16 figures, including 5 color. Accepted to Astrophysical Journa
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression
A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies
Genetic divergence in two tropical maize composites after four cycles of reciprocal recurrent selection
First published: 6 January 2017; Open Access JournalTwo tropical maize composites were subjected to four cycles of reciprocal recurrent selection to develop divergent inbred lines with good combining ability. This study was conducted to examine the extent of genetic diversity, changes in allele composition and genetic structure, of 100 randomly selected S1 lines each from the original (C0) and advanced (C4) selection cycles of TZL COMP3 and TZL COMP4, genotyped using single nucleotide polymorphism (SNP) markers. Results revealed that the proportion of alleles at both low and high frequencies decreased from C0 to C4, whereas those at intermediate frequencies increased at C4 in the two composites. More unique and other alleles were lost at C4 in TZL COMP3 relative to those in TZL COMP4. The changes in different measures of genetic diversity were either small or negligible with selection in the two composites. The proportion of markers departing from Hardy–Weinberg equilibrium (HWE) decreased with selection, whereas the total number of pairs of markers in linkage disequilibrium increased with selection in the two composites. Examination of changes in population structures using a model-based approach as well as cluster and multivariate analyses found a high degree of concordance in stratifying the 400 S1 lines into four non-overlapping groups corresponding to the two selection cycles each within the reciprocal composites. The observed molecular-based divergence between cycles within the same composite and the clear differentiation between the complementary composites highlight the importance of reciprocal recurrent selection for preserving genetic diversity for long-term selection. This increases the potential of the advanced selection cycles to sustain genetic gain in productivity of hybrids adapted to the savannas in West and Central Africa
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported
Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management
Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks
- …