29 research outputs found

    Les fĂŞtes de la RĂ©volution Ă  Metz. 1789-An VIII (1799)

    Get PDF

    Investigation of Damp Heat aging on soda-lime glass for photovoltaic applications

    Get PDF
    International audienceDamp heat test was performed on commercial soda-lime glass to characterize functional properties of glass in photovoltaic applications and to define aging mechanisms. In addition to the measurements of optical properties, FTIR, SEM-EDX and XPS analyses were carried out. The damp heat exposed samples presented an increased transmittance in UV, visible and near-IR ranges. The results were explained by hydration of glass network with heat. Molecular water adsorption involves a leaching process of network modifier cations and especially sodium ions. Hydrolysis also occurs in silica network with free molecular water reaction. This phenomenon enhances concentration of hydroxyl groups in glass highlighted by FTIR measurements and promotes formation of silanol groups. The tin side dependence on sodium leaching which acts as a passivating barrier for ionic transport is emphasized which would be worth taking into consideration for photovoltaic module design

    Impact of the aging of a photovoltaic module on the performance of a grid-connected system

    Get PDF
    Photovoltaic systems belong to the green energy dynamics which is an ambitious program based on energy efficiency and sustainable development. In this study, the impact of the aging of a photovoltaic module is investigated on the electrical performance of a grid-connected system. A photovoltaic conversion chain with MPPT (Maximum Power Point Tracking) control and LC (Inductor-Capacitor) filter is modeled and dimensioned according to the grid constraints. A method of hybridation detection of the MPPT coupling long-time aging evolution and short-time determination is proposed. Aging laws for the electrical and optical degradations of the photovoltaic module are introduced for the long-time evolution. Results display the lowering of the maximal power point with a rate of 1%/year and a slight augmentation of the THD over time even though it remains inferior to the IEEE standard STD 19-1992 maximum value of 5% for a usage of 20 years. Moreover, an equivalent scheme for the additional electrical resistance engendered by the aging of the photovoltaic module regarding other resistances of the photovoltaic system is given. Finally, the elevation of this resistance by 12.8% in 20 years may have non-negligible consequences on the power production of a large-scale installation. © 201

    Experimental characterization and performance evaluation of geothermal grouting materials subjected to heating–cooling cycles

    Get PDF
    In recent years, the increasing rise in environmental awareness among energy consumers has led to an increasing use of renewable energies such as the geothermal energy. An important role in the efficient exploitation of the geothermal resource is played by the grouting material placed in the borehole between the pipes and the ground. Actually, the use of proper grouts is essential to provide an effective heat transfer between the ground and the heat carrier fluid in the pipes, and also to comply with the mechanical and environmental demands. However, when it comes to the construction of the GHP installations, the grout is especially required to be easy to work with (workable) and for this reason more water than required is sometimes added. In order to assess the suitability of grouting materials with significant water/solid ratios, the thermal conductivity, mechanical strength and permeability of five different grouts and grout–pipe specimens were measured for their laboratory characterization. In addition, the grouts were subjected to heating and cooling cycles to evaluate their durability with time in terms of the potential degradation of the materials and the loss of quality of the grout–pipe interface. According to the results obtained, the grouts here tested are appropriate for most of the geothermal heat pump installations, especially for those with low to medium ground thermal properties.The authors wish to express their gratitude to the Ministerio de Economía y Competitividad which funded this study within the Spanish National Plan for Scientific and Technical Research and Innovation (INNPACTO program) through the research project IPT-2011-0877-920000

    Durability of geothermal grouting materials considering extreme loads

    Get PDF
    The concern about the massive use of the non-renewable and very limited fossil fuels together with the well-known effects of the global warming makes it more necessary the efficient use of the current forms of renewable energy generation. Because of the crucial role played by the grouting materials in the Ground Source Heat Pumps (GSHP), a proper selection of these elements should be made based on a deep knowledge of their performance. In this paper, thermal conductivity, mechanical strength and grout-pipe permeability of four different highly workable grouts have been tested before and after they were subjected to wet-dry and freeze-thaw durability treatments. Results obtained demonstrated the harmful effects of using a large amount of mixing water in grouts subjected to those extreme loads. However, the use of these type of grouts with very good workability is still possible in GSHP installations with balanced thermal designs provided that regular operational and environment conditions are considered.The authors wish to express their gratitude to the Ministry of Economy and Competitiveness which funded this study within the Spanish National Plan for Scientific and Technical Research and Innovation (INNPACTO program) through the research project IPT-2011-0877-920000. The authors are also grateful to all the organizations and companies participating in this project: Sacyr Industrial, Universidad Politécnica de Madrid and Cype

    Efficiency of closed loop geothermal heat pumps: A sensitivity analysis

    Get PDF
    Geothermal heat pumps are becoming more and more popular as the price of fossil fuels is increasing and a strong reduction of anthropogenic CO2 emissions is needed. The energy performances of these plants are closely related to the thermal and hydrogeological properties of the soil, but a proper design and installation also plays a crucial role. A set of flow and heat transport simulations has been run to evaluate the impact of different parameters on the operation of a GHSP. It is demonstrated that the BHE length is the most influential factor, that the heat carrier fluid also plays a fundamental role, and that further improvements can be obtained by using pipe spacers and highly conductive grouts. On the other hand, if the physical properties of the soil are not surveyed properly, they represent a strong factor of uncertainty when modelling the operation of these plants. The thermal conductivity of the soil has a prevailing importance and should be determined with in-situ tests (TRT), rather than assigning values from literature. When groundwater flow is present, the advection should also be considered, due to its positive effect on the performances of BHEs; by contrast, as little is currently known about thermal dispersion, relying on this transport mechanism can lead to an excessively optimistic desig

    A review of grout materials in geothermal energy applications

    Get PDF
    Ground heat exchangers are surrounded by grout material, making it one of the most important components in geothermal energy applications since it significantly affects the system's thermal performance. The current study reviews the different types of grout materials and compares their thermophysical properties. The most critical parameter is the grout's thermal conductivity in which it always presents a proportional relation with the system's efficiency. Numerous factors are involved in this review to ascertain theier impact on the grouts’ performance such as flowability, shrinkage, moisture content, freezing, heat capacity, strength, permeability, solubility and thermal imbalance. The different grouts compared are bentonite, cement, sand, graphite, controlled low-strength material, dolomite, and phase change materials. The literature shows that phase change materials are the best choices of grouting since they can provide high storage capacity, stability and temperature uniformity. The major problem of such materials is their low thermal conductivity. Thus, it is recommended to use composite phase change materials to enhance their thermal conductivity and increase the storage/retrieval rate

    Intensification des performances des procédés énergétiques par hybridation solaire/géothermie

    No full text
    PERPIGNAN-BU Sciences (661362101) / SudocSudocFranceF

    Improvement of Borehole Thermal Energy Storage Design Based on Experimental and Modelling Results

    No full text
    International audienceUnderground Thermal Energy Storage appears to be an attractive solution for solar thermal energy storage. The SOLARGEOTHERM research project aimed to evaluate the energetic potential of borehole thermal energy storage by means of a full-scale experimental device and heat transfer models. Analysis of the experimental data showed that a single borehole is not efficient for storage. Models showed that the heat transfer fluid in the geothermal probe lost 15 per cent of its energy at a depth of 100 m and 25 per cent at 150 m. A relation was established that enables comparison of the storage characteristic time of any vertical BTES to an optimum one. Finally, guidelines are formulated to optimise the design of vertical borehole fields with an objective of inter-seasonal heat storage
    corecore