56 research outputs found

    Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling

    Get PDF
    Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.Fil: Cely Ortiz, Diana Cataloina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Felice, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Diaz Zegarra, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Valverde, Carlos Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Federico, Marilén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Palomeque, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Wehrens, Xander H.T.. Cardiovascular Research Institute. Baylor College of Medicine. Center for Space Medicine. Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics; Estados UnidosFil: Kranias, Evangelina G.. University of Cincinnati; Estados UnidosFil: Aiello, Ernesto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Lascano, Elena Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Negroni, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Mattiazzi, Ramona Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; Argentin

    Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum.

    Get PDF
    Ca(2+) signaling in cells is largely governed by Ca(2+) diffusion and Ca(2+) binding to mobile and stationary Ca(2+) buffers, including organelles. To examine Ca(2+) signaling in cardiac atrial myocytes, a mathematical model of Ca(2+) diffusion was developed which represents several subcellular compartments, including a subsarcolemmal space with restricted diffusion, a myofilament space, and the cytosol. The model was used to quantitatively simulate experimental Ca(2+) signals in terms of amplitude, time course, and spatial features. For experimental reference data, L-type Ca(2+) currents were recorded from atrial cells with the whole-cell voltage-clamp technique. Ca(2+) signals were simultaneously imaged with the fluorescent Ca(2+) indicator Fluo-3 and a laser-scanning confocal microscope. The simulations indicate that in atrial myocytes lacking T-tubules, Ca(2+) movement from the cell membrane to the center of the cells relies strongly on the presence of mobile Ca(2+) buffers, particularly when the sarcoplasmic reticulum is inhibited pharmacologically. Furthermore, during the influx of Ca(2+) large and steep concentration gradients are predicted between the cytosol and the submicroscopically narrow subsarcolemmal space. In addition, the computations revealed that, despite its low Ca(2+) affinity, ATP acts as a significant buffer and carrier for Ca(2+), even at the modest elevations of [Ca(2+)](i) reached during influx of Ca(2+)

    Cardiovascular Imaging Using Two-Photon Microscopy

    No full text

    EFFECT OF INSULIN ON HYDROGEN-PEROXIDE PRODUCTION BY HUMAN POLYMORPHONUCLEAR LEUKOCYTES - STUDIES WITH MONOCLONAL ANTIINSULIN RECEPTOR ANTIBODIES, AND AN AGONIST AND AN INHIBITOR OF PROTEIN-KINASE-C

    No full text
    This study evaluated the effect of insulin on the respiratory burst of human polymorphonuclear leukocytes (PMNLs) and the signalling pathways involved in this process, especially the involvement of protein kinase C (PKC). Isolated human PMNLs from healthy volunteers were incubated with different concentrations of insulin (10(-10)-10(-7) mol/l) and for different durations of incubation (5-90 min). The intracellular production of hydrogen peroxide (H2O2) was detected employing a previously validated flow cytometric assay using 2',7'-dichlorofluorescein-diacetate (DCFH-DA) as a marker for H2O2 production. Specificity of insulin action was verified using an insulin antagonist (the monoclonal antibody MA-10). To identify the signalling pathway involved, we used: (a) monoclonal antibody MA-5, directed against the alpha-subunit of the insulin receptor, that partially mimics insulin without activating tyrosine kinase; (b) H7, an inhibitor of PKC involved in O-2- production in PMNLs, and (c) phorbol myristate acetate (PMA) that binds and stimulates PKC. Insulin caused a dose- and time-dependent stimulation of H2O2 release by human PMNLs. The effect of insulin was blocked by MA-10. The actions of insulin and PMA on H2O2 release were additive, whereas the actions of MA-5 and PMA were not. H7 partially inhibited the H2O2 production stimulated by insulin and completely inhibited MA-5 action. We conclude that insulin stimulates, in a dose- and time-related manner, the respiratory burst of human PMNLs. PKC activation can only partially account for the intracellular mechanisms involved in this process

    L-type Ca2+ current as the predominant pathway of Ca2+ entry during INa activation in β-stimulated cardiac myocytes

    No full text
    In the present study Ca2+ entry via different voltage-dependent membrane channels was examined with a fluorescent Ca2+ indicator before and after β-adrenergic stimulation.To clearly distinguish between Ca2+ influx and Ca2+ release from the sarcoplasmic reticulum the Ca2+ store was blocked with 0.1 μm thapsigargin and 10 μm ryanodine. Omitting Na+ from the pipette filling solution minimized Ca2+ entry via Na+-Ca2+ exchange.Individual guinea-pig ventricular myocytes were voltage clamped in the whole-cell configuration of the patch-clamp technique and different membrane currents were activated using specific voltage protocols. The intracellular Ca2+ concentration was simultaneously recorded with a laser-scanning confocal microscope using fluo-3 as a Ca2+ indicator.Ca2+ entry pathways were discriminated using pharmacological blockers under control conditions and during β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline) in the bathing solution or 100 μm cAMP in the patch-clamp pipette.Isoproterenol or cAMP potentiated the Ca2+ influx signals recorded during L-type Ca2+ current activation but, more interestingly, also during Na+ current (INa) activation. The Ca2+ influx signal arising from L-type Ca2+ current activation was usually blocked by 50 μm Cd2+. However, the Ca2+ influx signal elicited by the Na+ current activation protocol was only curtailed to 56.4 ± 28.2% by 100 μm Ni2+ but was reduced to 17.9 ± 15.1% by 50 μm Cd2+ and consistently eliminated by 5 mm Ni2+.The pronounced Cd2+ and moderate Ni2+ sensitivity of the Ca2+ influx signals suggested that the predominant source of Ca2+ influx during the Na+ current activation – before and during β-adrenergic stimulation – was a spurious activation of the L-type Ca2+ current, presumably due to voltage escape during Na+ current activation.Calculations based on the relationship between Ca2+ current and fluorescence change revealed that, on average, we could reliably detect rapid Ca2+ concentration changes as small as 5.4 ± 0.7 nm. Thus, we can estimate an upper limit for the Ca2+ permeability of the phosphorylated TTX-sensitive Na+ channels which is less than 0.04:1 for Ca2+ ions flowing through Na+ channels via the proposed ‘slip-mode’ Ca2+ conductance. Therefore the slip-mode Ca2+ conductance of Na+ channels does not contribute noticeably to the Ca2+ signals observed in our experiments

    Application of two-photon flash photolysis to reveal intercellular communication and intracellular Ca²⁺ movements

    No full text
    Two-photon excitation makes it possible to excite molecules in volumes of much less than 1 fl. In two-photon flash photolysis (TPFP) this property is used to release effector molecules from caged precursors with high three-dimensional resolution. We describe and examine the benefits of using TPFP in model solutions and in a number of cell systems to study their spatial and temporal properties. Using TPFP of caged fluorescein, we determined the free diffusion coefficient of fluorescein (D = 4x0⁻⁶ cm²/s at 20°C, which is in close agreement with published values). TPFP of caged fluorescein in lens tissue in situ revealed spatial nonuniformities in intercellular fiber cell coupling by gap junctions. At the lens periphery, intercellular transport was predominantly directed along rows of cells, but was nearly isotropic further from the periphery. To test an algorithm aiming to reconstruct the Ca²⁺ release flux underlying physiological Ca²⁺ signals in heart muscle cells, TPFP of DM- nitrophen was utilized to generate artificial microscopic Ca²⁺ signals with known underlying Ca²⁺ release flux. In an experiment with mouse oocytes, the recently developed Ca² cage dimethoxynitrophenyl-ethyleneglycol-bis-(β-aminoethylether)-N,N,N′,N′ tetraacetic acid-4 (DMNPE-4) was released in the oocyte cytosol and inside a nucleolus. Analysis of the resulting fluorescence changes suggested that the effective diffusion coefficient within the nucleolus was half of that in the cytosol. These experiments demonstrate the utility of TPFP as a novel tool for the optical study of biomedical systems

    Consequences of depleted SERCA2-gated calcium stores in the skin

    Get PDF
    Sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) pumps belong to the family of Ca2+-ATPases responsible for the maintenance of calcium in the endoplasmic reticulum. In epidermal keratinocytes, SERCA2-controlled calcium stores are involved in cell cycle exit and onset of terminal differentiation. Hence, their dysfunction was thought to provoke impaired keratinocyte cohesion and hampered terminal differentiation. Here, we assessed cultured keratinocytes and skin biopsies from a canine family with an inherited skin blistering disorder. Cells from lesional and phenotypically normal areas of one of these dogs revealed affected calcium homeostasis due to depleted SERCA2-gated stores. In phenotypically normal patient cells, this defect compromised upregulation of p21(WAF1) and delayed the exit from the cell cycle. Despite this abnormality it failed to impede the terminal differentiation process in the long term but instead coincided with enhanced apoptosis and appearance of chronic wounds, suggestive of secondary mutations. Collectively, these findings provide the first survey on phenotypic consequences of depleted SERCA-gated stores for epidermal homeostasis that explain how depleted SERCA2 calcium stores provoke focal lesions rather than generalized dermatoses, a phenotype highly reminiscent of the human genodermatosis Darier disease
    corecore