46 research outputs found

    Supervised learning techniques for stress detection in car drivers

    Get PDF
    6noIn this paper we propose the application of supervised learning techniques to recognize stress situations in drivers by analyzing their Skin Potential Response (SPR) and the Electrocardiogram (ECG). A sensing device is used to acquire the SPR from both hands of the drivers, and the ECG from their chest. We also consider a motion artifact removal algorithm that allows the generation of a single cleaned SPR signal, starting from the two SPR signals, which could be characterized by artifacts due to vibrations or movements of the hands on the wheel. From both the cleaned SPR and the ECG signals we compute some statistical features that are used as input to six Machine Learning Algorithms for stress or non-stress episodes classification. The SPR and ECG signals are also used as input to Deep Learning Algorithms, thus allowing us to compare the performance of the different classifiers. The experiments have been carried out in a firm specialized in developing professional car driving simulators. In particular, a dynamic driving simulator has been used, with subjects driving along a straight road affected by some unanticipated stress-evoking events, located at different positions. We obtain an accuracy of 88.13% in stress recognition using a Long Short-Term Memory (LSTM) network.openopenZontone P.; Affanni A.; Bernardini R.; Del Linz L.; Piras A.; Rinaldo R.Zontone, P.; Affanni, A.; Bernardini, R.; Del Linz, L.; Piras, A.; Rinaldo, R

    Comparative assessment of drivers' stress induced by autonomous and manual driving with heart rate variability parameters and machine learning analysis of electrodermal activity

    Get PDF
    12openopenZontone, P; Affanni, A; Bernardini, R; Brisinda, D; Del Linz, L; Formaggia, F; Minen, D; Minen, M; Savorgnan, C; Piras, A; Rinaldo, R; Fenici, RZontone, P; Affanni, A; Bernardini, R; Brisinda, D; Del Linz, L; Formaggia, F; Minen, D; Minen, M; Savorgnan, C; Piras, A; Rinaldo, R; Fenici,

    A numerical method for predicting the deformation of crazed laminated windows under blast loading

    Get PDF
    The design of laminated glazing for blast resistance is significantly complicated by the post-crack behaviour of glass layers. In this research, a novel numerical method based on a semi-analytical energy model is proposed for the post-crack behaviour of crazed panes. To achieve this, the non-homogenous glass cracks patterns observed in literature experimental and analytical work was taken into consideration. It was assumed that, after the glass crazing, further deformations would occur in the cracked edge areas, whilst the central window surface would remain largely undeformed. Therefore, different internal work expressions were formulated for each zone and were then combined in the overall model. The resulting differential equation was then solved numerically. The results obtained were compared with data from four experimental full-scale blast tests for validation. Three of these blast tests (Tests 1–3) were presented previously (Hooper et al., 2012) on 1.5 × 1.2 m laminated glazing samples made up with two 3 mm glass layers and a central 1.52 mm PVB membrane, using a 15 and 30 kg charge masses (TNT equivalent) at 13–16 m stand-off. The fourth blast test (Test 4) was conducted on a larger 3.6 × 2.0 m pane of 13.52 mm thickness, using a 100 kg charge mass (TNT equivalent) at a 17 m stand-off. All blast tests employed the Digital Image Correlation (DIC) technique to obtain 3D out-of-plane deflections and strains.The proposed analytical method reproduced the experimental deflection profiles, with the best estimates obtained for the more severe loading cases. Reaction forces were also compared with experimental estimates. The predictive ability of the proposed method could permit more accurate designs to be produced rapidly, improving structures resistance to such loadings

    Reaction forces of laminated glass windows subject to blast loads

    Get PDF
    Several blast trials on laminated glass windows have been performed in the past, using both full field 3D Digital Image Correlation and strain gauges located on the supporting structure to collect information on the glass pane behaviour. The data obtained during three blast experiments were employed to calculate reaction forces throughout the perimeter supports both before and after the fracture of the glass layers. The pre-crack experimental data were combined with finite element modelling results to achieve this, whilst solely experimental results were employed for post-cracked reactions. The results for the three blast experiments were compared to identify similarities in their behaviour. It is intended that the results can be used to improve the existing spring–mass systems used for the design of blast resistant windows

    Determining Material Response for Polyvinyl Butyral (PVB) in Blast Loading Situations

    Get PDF
    Protecting structures from the effect of blast loads requires the careful design of all building components. In this context, the mechanical properties of Polyvinyl Butyral (PVB) are of interest to designers as the membrane behaviour will affect the performance of laminated glass glazing when loaded by explosion pressure waves. This polymer behaves in a complex manner and is difficult to model over the wide range of strain rates relevant to blast analysis. In this study, data from experimental tests conducted at strain rates from 0.01 s−1 to 400 s−1 were used to develop material models accounting for the rate dependency of the material. Firstly, two models were derived assuming Prony series formulations. A reduced polynomial spring and a spring derived from the model proposed by Hoo Fatt and Ouyang were used. Two fits were produced for each of these models, one for low rate cases, up to 8 s−1, and one for high rate cases, from 20 s−1. Afterwards, a single model representing all rates was produced using a finite deformation viscoelastic model. This assumed two hyperelastic springs in parallel, one of which was in series with a non-linear damper. The results were compared with the experimental results, assessing the quality of the fits in the strain range of interest for blast loading situations. This should provide designers with the information to choose between the available models depending on their design needs

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Emotional response analysis using electrodermal activity, electrocardiogram and eye tracking signals in drivers with various car setups

    No full text
    In the automotive industry, it is important to evaluate different car setups in order to match a professional driver's preference or to match the most acceptable setup for most drivers. Therefore, it is of great significance to devise objective and automatic procedures to assess a driver's response to different car settings. In this work, we analyze different physiological signals in order to evaluate how a particular car setup can be more or less stressful than others. In detail, we record an endosomatic Electrodermal Activity (EDA) signal, called Skin Potential Response (SPR), the Electrocardiogram (ECG) signal, and eye tracking coordinates. We eliminate motion artifacts by processing two SPR signals, one from each hand of the driver. Tests are carried out in a company that designs driving simulators, where the tested individuals had to drive along a straight highway with several lane changes. Three different car setups have been tested (neutral, understeering, and oversteering). We apply a statistical test to the data extracted from the cleaned SPR signal, and we then compare the results with the ones obtained using a Machine Learning algorithm. We show that we are able to discriminate the drivers' response to each setup, and, in particular, that the base car setup generates the least intense emotional response when compared to the understeering and the oversteering car setups
    corecore