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Abstract 

The design of laminated glazing for blast resistance is significantly complicated by the post-crack 

behaviour of glass layers. In this research, a novel numerical method based on a semi-analytical energy 

model is proposed for the post-crack behaviour of crazed panes. To achieve this, the non-homogenous 

glass cracks patterns observed in literature experimental and analytical work was taken into consideration. 

It was assumed that, after the glass crazing, further deformations would occur in the cracked edge areas, 

whilst the central window surface would remain largely undeformed. Therefore, different internal work 

expressions were formulated for each zone and were then combined in the overall model. The resulting 

differential equation was then solved numerically. The results obtained were compared with data from 

four experimental full-scale blast tests for validation. Three of these blast tests (Tests 1 to 3) were 

presented previously (Hooper et al., 2012) on 1.5 x 1.2 m laminated glazing samples made up with two 3 

mm glass layers and a central 1.52 mm PVB membrane, using a 15 and 30 kg charge masses (TNT 

equivalent) at 13-16 m stand-off. The fourth blast test (Test 4) was conducted on a larger 3.6 x 2.0 m pane 

of 13.52 mm thickness, using a 100 kg charge mass (TNT equivalent) at a 17 m stand-off. All blast tests 



employed the Digital Image Correlation (DIC) technique to obtain 3D out-of-plane deflections and 

strains.  

The proposed analytical method reproduced the experimental deflection profiles, with the best estimates 

obtained for the more severe loading cases. Reaction forces were also compared with experimental 

estimates. The predictive ability of the proposed method could permit more accurate designs to be 

produced rapidly, improving structures resistance to such loadings. 

 

Introduction 

The blast resistance of glazing is an important consideration when designing against explosions. 

Monolithic annealed glass panes produce dangerous shards due to the inherent low fracture toughness of 

the material. Fragments are propelled both inside and outside the building space and can cause significant 

injuries and damage. After fracture, residual blast pressures are able to penetrate the building envelope, 

causing further injuries to occupants and equipment.  

Laminated glazing, comprising layers of glass and Polyvinyl Butyral (PVB) membranes, is significantly 

more resilient to blast loads [1]. After the glass layers craze, the glass fragments remain bonded to the 

polymer membrane, which need to be retained in the frame. The PVB membrane can then deform 

significantly, absorbing large amounts of energy and preventing blast pressures from entering the interior.  

The behaviour of the crazed pane is complex to model in detail. To gain understanding of the laminated 

material, several experimental studies have been performed on glazing panels subject to shock loading, 

either with blast tests [2-9] and in shock tubes [10]. The results of such tests have been used recently by 

many researchers to validate finite element analyses (FEA) of both impact and blast loading [2, 3, 11-17]. 

Whilst these models are often able to predict the behaviour of the system, their use requires significant 

specialist knowledge and computer time.  

Analytical solutions instead can produce relatively rapid results, though they cannot account for the same 

variety of situations as FEA models. A commonly used analysis method is given by single degree of 

freedom approximations. These can use constants derived either empirically or from first principles to 

estimate the windows behaviour and therefore produce structural designs [1, 18]. This approach is 

currently used for the design of elements, as it can produce accurate data based on extensive tests 

databases [1]. Some authors [19-22] proposed instead more detailed analytical models, as these could be 



used to predict additional aspects of the glazing behaviour. Wei and Dharani [23] employed Von Karman 

large deflection theory to simulate the deformation of window panes. The authors used their results to 

also calculate the probability of window failures and the likely crack locations [24]. In this analysis the 

authors used a single cosine function to represent the deflected shape of the window. Their work was 

expanded by Del Linz et al. [25] employing a higher order deflection function and comparing the 

analytical results with DIC recorded data. The research used three sets of blast test data (Tests 1 to 3) and 

showed that the analytical technique considered could accurately predict deflections before the glass 

failure and likely crack concentrations in the failed panels, as well as the reaction forces imposed on the 

supporting structures. It therefore could provide additional details on the structural behaviour compared 

with previous approaches, using potentially a smaller number of initial assumptions. 

The condition of a glazed pane after it has crazed is more complex than before the glass failure. The 

crazed pane material is no longer homogenous as its properties are likely to depend on the density and 

orientation of the cracks. As shown experimentally [4] and through the pre-crack solutions mentioned 

above [25], in cases where the blast pressures deform the glass impulsively, the crack pattern tends to be 

denser along bands corresponding to the higher bending stresses in the pane at the points of initial 

fracture. This influences the deformation which follows, especially in the case of stronger blast 

excitations. A significant change in the panes curvature occurs at these higher crack density locations 

throughout the glass deformation history. This effect is indicated by the arrows in Error! Reference 

source not found. for Test 3, where a clear change in curvature is visible approximately 1/3 of the 

distance from the edge to the centre of the pane. Error! Reference source not found. shows the 

locations of the surface cuts plotted in Error! Reference source not found. and in subsequent figures. In 

all cases the shortest pane side was assumed to be aligned with the x-axis.  

 

 

Figure 1: Deformation along a centre line of the window in Test 3 (adapted from [4]).   



 

Figure 2: Cuts locations used in the data presentation. 

 

Whilst the detailed physical characteristics of the systems are different, the presence of these lines of high 

curvature highlight a similarity with the plastic large deflection of plates commonly analysed with yield 

line theory [26]. This analysis is based on equating the external work performed by the loads to the 

internal energy stored in the system, which is localised at a series of failure yield lines. For laminated 

glass panes, the energy absorbing capacity due to out-of-plane bending of the cracked glass is close to 

zero, therefore a different energy absorption method needs to be assumed. As the deflections of the 

system cannot be assumed to be small, the membrane forces acting on the pane will be significant and 

represent a possible mechanism for the development of internal energy. Therefore, whilst in other 

applications the internal work is calculated using the increase of rotation angle at the yield lines and a 

plastic bending capacity, in this case the elongation of the membranes was considered. As mentioned 

above, the glass cracks were shown to be concentrated along the edges of the panes in the blasts tests 

considered in previous studies. Therefore, for this research, it was assumed that the material deformations 

due to the membrane forces would also be concentrated in these areas, which would be limited by the 

window supports and the lines of high curvature highlighted in Error! Reference source not found.. The 

behaviour of such cracked glass was assumed to be similar to that measured by Hooper et al. [4]. A 

differential equation solution for the systems of interest was derived equating the external energies 

applied by the blast to the internal membrane energy caused by the deformation of these highly cracked 

areas, respecting the assumptions of the behaviour described above. 



To validate the proposed analytical methods using data comprising different pane dimensions and aspect 

ratios, data from four blast tests were used. Three of these (Tests 1 to 3) were obtained from Hooper et al. 

[4] and have been used previously to validate the pre-crack analytical solution [25]. Additionally, the 

results from a further test (Test 4) conducted by Hooper are presented here and compared with both pre-

crack and post-crack analytical solutions [27]. The glazing pane used for Test 4 was 3.6 m x 2.0 m. The 

glass make-up was given by two 6 mm glass layers interlayered with a 1.52 mm PVB layer.  

The analytical solution for the post-crack behaviour was therefore compared with the experimental data 

from four tests. An estimate of the reactions based on the model results was also produced for the first 

three tests so as to compare these results with those produced from experimental data [28]. Due to 

possible uncertainties in the derivation of the loading function, a small sensitivity study was also 

conducted to assess the influence of the fitting paramaters. 

The aim of this work was to provide a more flexible tool for designers, which could provide additional 

details, such as the entire deformation history and reactions forces calculated in this work, compared with 

previously used design methods. Additionally, as per the single degree of freedom approach, calculations 

would be relatively rapid, therefore offering a useful tool for the practical design of these structures. 

1. Method 

1.1. Experimental program 

The evaluation procedures for all four tests were very similar. Tests 1 to 3 have been described in  Hooper 

et al. [4]. They were conducted on 1.5 x 1.2 m laminated glazing samples made up with two 3 mm glass 

layers and a central 1.52 mm PVB membrane.  The blast loading was a 15 and 30 kg charge masses (TNT 

equivalent) at 13-16 m stand-off.  Test 4, conducted by Hooper [27] on a pane, 3.6 m  x 2.0 m, was aimed 

at measuring the blast response of larger laminated samples. The blast loading was produced by a 100 kg 

charge mass (TNT equivalent) at a stand-off of 17 m. The glazing pane make-up was two 6 mm layers of 

annealed glass bonded to a central 1.52 mm thick PVB membrane. No additional treatments besides the 

normal lamination process were applied to bond the layers of the sample. A white enamel coating was 

applied to the inside face to facilitate the DIC instrumentation. The glazing pane was mounted in a mild 

steel frame using a two part silicone sealant joint. This provided a continuous support which had 

properties close to a pin condition. The test piece was positioned in a concrete cubicle.  



During the test, the DIC technique was employed to collect full field 3D deformations and strains of the 

back face of the pane, as was done in tests 1 to 3 [4]. To achieve this, a random pattern of black dots 

(“speckles”) was applied over the white enamel. Two high speed cameras were employed to capture 

simultaneous pictures of this pattern from different angles. GOM Aramis DIC software [29] was used to 

analyse the captured images and produce the strains and deflections in three dimensions over the whole 

surface. The software was firstly calibrated using the procedure indicated by the manufacturer. With this 

information, the program could determine the relative positions of the cameras as well as correct for lens 

distortions in the images. The speckles on the samples surface were then tracked and the deflections and 

strains determined following the methods described by Schreier et al. [30]. The test arrangement is shown 

in Error! Reference source not found.. In this case, Photron type SA3 cameras were employed and data 

were recorded at a frequency of 2000 Hz.  

The pressure gauges employed failed. Therefore the reflected peak pressure and impulse were calculated 

using Air3D [31] and CONWEP [32] at the gauge location. 

 

Figure 3: Typical test and DIC set up (adapted from [25]). 

 

1.2. Analytical method 

The results from Tests 1 to 4 were employed to validate analytical solutions for the deflection of the blast 

loaded glazing panes. The pre-crack solutions were found following the method described by Del Linz et 

al. [25], though the solution method is summarised below. A post-crack solution was then developed 

using a technique based on the yield line theory, as the new condition of the system required a different 

approach compared with the pre-crack situation. Both these systems required several assumptions to be 



made regarding the loading and the material properties of the glazing panes both before and after the glass 

crack. 

1.2.1. Dynamic loading 

It was decided to represent the blast loading using the same approach as earlier authors [23, 25, 33-35] by 

employing the equation [36]: 
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where p(t) is the pressure at time t, p0 is the initial peak, td is the positive phase duration and α is an 

exponential decay coefficient. The equation can represent both the positive and the negative phases of the 

blast loading. Whilst in the cases considered in this work the positive pressure phase tended to cause the 

glazing failure, the flexibility of the pressure representation could be useful for more general application. 

The shape of the curve is shown in Error! Reference source not found.. As discussed in previous work 

[25], the reflected pressure was not experimentally recorded during the first three tests considered. 

Therefore in these cases the results of computational fluid dynamics analyses were used to fit the 

parameters of the equation above. The same procedure was also applied to the data of test 4. The 

CONWEP based tool included in LS-Dyna [37] was used. Whilst it would have been equivalent to use the 

original curves on which the tool was based, it was decided that using the inbuilt tool would be more 

convenient in this study. A simple FEA model was created including the glazing pane. This was modelled 

as continuously supported for simplicity, as the software simulation did not include fluid-structure 

interactions. The 2D mesh used was composed of 50 mm square elements. The thickness was assumed to 

be 13.52 mm. Glass material properties were employed. It should be noted that the purpose of the finite 

element analysis was solely to determine the blast loading pressures. Therefore, the details of the material 

model and sections would not influence the results. The blast was modelled using the command 

LOAD_BLAST_ENHANCED and assuming a surface burst. The blast height was assumed to be at the 

mid height of the panel, and the experimental stand-off of 17 m was used. The charge weight was also 

assumed to be 100 kg as per the experiment. The equation given above was fitted to the pressure time 

history using a simple minimisation of square error technique. The final parameters for all the cases are 

given in table 1. Data regarding the blast tests set ups, including the charge weight used and the stand-off 

distances, were also included in the same table. The positive impulse applied was calculated integrating 

the theoretical results. As the lack of direct measurements caused some uncertainty in the pressure 



estimates, it was decided to also conduct a small sensitivity study with the proposed models varying the 

impulse, peak pressure and the positive phase durations. The cases considered are listed in table 2. The 

central deflections were compared to assess the influence of these parameters. 

 

Figure 4: Plot of the function used to represent the blast pressure. 

 

Table 1: The blast curve constants used in the analytical calculations and the blast impulse for each case 

considered. 

Test C4 

charge 

weight 

(kg) 

TNT 

equivalent 

charge 

weight 

(kg) 

Stand-

off (m) 

po (Pa) Td (s) α Impulse (Pa s) 

1 12.8 15 13 92000 0.0106 1.90 284 

2 25.6 30 16 99000 0.010 0.88 344 

3 25.6 30 14 127000 0.00693 1.1096 413 

4 90.9 100 17 199000 0.0179 1.8730 835 

 

 

 

 



Table 2: The blast curve constants used for the sensitivity study on the blast parameter effects on the 

deflection predictions. 

Case po (Pa) Td (s) α Impulse (Pa s) 

Test 3 model 127000 0.00693 1.1096 413 

1 – Higher impulse 127000 0.007675 1.087 350 

2 – Lower impulse 127000 0.010142 0.954 480 

3 – Higher peak pressure 150000 0.00753 1.024 413 

4 – Lower peak pressure 100000 0.0109 0.885 413 

 

1.2.2. Material properties 

For the pre-crack analysis, the same material properties used in the previous study [25] were employed. 

The composite Young’s modulus and Poisson ratio were found using the rule of admixture: 
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where E is the equivalent Young’s modulus of the composite material, Eg and Ep are the Young’s moduli 

of the glass and PVB membrane respectively, and hg and hp are the thicknesses of the glass and PVB. 

 
2

2

g g p p

g p

h h

h h

 






 Eq. 3 

where υ is the Poisson’s ratio of the composite material and υg and υp are the Poisson’s ratios of the glass 

and PVB layers. The total mass per unit area was found through the formula: 

 2 g g p ph h     Eq. 4 

where μ is the mass per unit area and ρg and ρp are the densities of the glass and PVB layers. The glass 

and PVB material constants are listed in table 3. 

Table 3: Material properties of the glass and PVB layers. 

Material Density 

(kg/m3) 

Young’s modulus 

(Pa) 

Poisson’s 

ratio 

Glass 2530 72x109 0.22 

PVB 1100 0.53x109 0.485 

 



As before, a failure stress of 100 MPa was assumed to determine the failure time of the glass [25]. This 

value is assumed to take into consideration the strain rate effects magnifying the material capacity during 

dynamic deformations. The value of 80 MPa assumed by previous authors [1, 4] was equivalent to the 

90% exceedance failure strength at a loading rate of 2 MPa/s (50 MPa) enhanced by strain rate effects. 

However, the results of the pre-crack solution [25] indicated that this value under predicted the panes 

failure times. As the deformation shapes were accurately predicted, it was considered likely that the 

material used had a capacity higher than previously assumed. A strength of 100 MPa instead produced 

realistic failure times. Cormie et al. [38] suggested that the dynamic effects on the material can be 

represented by equation 5: 
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where t1 and σ1 were the original failure time and stress and t2 and σ2 were the new failure time and stress. 

k was a constant given as 16 at temperatures below 150º C. As t2 was approximately 2.5 ms in the tests 

considered, a failure stress of 100 MPa would require a 2 MPa/s capacity of 56 MPa, still below the 

median failure limit of the data reported by Cormie et al.. Therefore, the limit used was considered 

realistic in the cases considered in this study.  

The post-crack material behaviour of the glazing pane instead showed more complex, inelastic 

characteristics during the blast tests and in laboratory experiments [4, 39-41]. Specifically, it appeared 

that during laboratory tensile tests a load plateau was reached after small deformations and that 

subsequent elongations took place at this stress level [4]. A material model showing this behaviour 

therefore needed to be applied to the present analysis. Galuppi and Royer-Carfagni [42] proposed an 

analytical method to calculate an equivalent elastic modulus of the cracked section. Alternatively, in 

previous work [4, 28] a Johnson Cook material law was assumed for FEA models and experimental 

analysis as it could represent both the plateau stress behaviour and the influence of strain rate on the 

results. Whilst such a material model could be used for this work, it was decided that its mathematical 

representation would complicate unduly the differential equations to be derived. Additionally, due to the 

inherent simplifications needed to derive the analytical solution, incorporating the full Johnson Cook law 

was not considered necessary. However, as it was important to include a material model which could 

represent the effect of the strain rate, the relationship presented by Hooper [27] was included. In his work, 



Hooper suggested that the plateau stress levels reached could be related to the strain rate of the tests 

through a logarithmic function. This was given by Equation 5: 

 10 ,0
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  Eq. 6 

where mp, σP, and 0&are material constants given in table 4. The fit is shown in Error! Reference source 

not found.. Therefore, in this work, the crazed panes were assumed to behave in a perfectly plastic 

manner, with the plateau stress level determined with the calculated strain rate.  

 

Figure 5: Crazed glass plateau stresses plotted against the strain rate. Hooper’s [27] logarithmic fit is also 

shown. 

 

Table 4: Material properties of the Johnson Cook material model, from Hooper [27]. 

Constant Value 

mp 4.9 x 106 Pa 

σP,0 11.0 x 106 Pa 

 1.0 1/s 

 

1.2.3. Pre-crack solution 

The analysis of the pre-crack deformations was performed following the method described by Del Linz et 

al. [25], which employed a solution of the von Karman large deflection equations.  These are given by:  

0&
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 Eq. 8 

where  F is the Airy’s stress function, E is the Young’s modulus of the material, w is the out of plane 

deflection at all points, D is the plate bending stiffness and μ is the mass per unit area of the structure. The 

loading function described above was assumed for this stage. The letter subscripts after the commas 

indicate differentiations of the variable in the space coordinate indicated, such that w,xy is equal to 
2d w

dxdy
    

. 

Pinned boundary conditions were used: 
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where a and b are the dimensions of the panel and the 0,0 point is in the centre of the system. 

To solve the equations, the following deflection shape was assumed,  
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where h is the total thickness of the panes, m and n are integer odd constants and φmn(t) are a series of 

constants varying in time characterising the amplitude of each mode of vibration at each time point. 

This assumption was employed together with Eq. 7 to derive the Airy’s stress function (F): 
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Finally, Eq. 8 was changed as shown in Eq. 12 and the previous results were substituted in. The Galerkin 

method was applied and the system of equations shown in Eq. 13 was obtained. This could then be solved 

numerically to obtain the constants φmn and therefore the deflections at all points.  
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These results were then used to calculate the bending and membrane stresses acting at all points of the 

pane, as done previously. With this data the failure time of the glass was estimated employing the limiting 

stress described above. Additionally, a crack density across the pane was calculated making use of the 

strain energy results. The method derived by Wei and Dharani [24] and utilised by Del Linz et al. [25] 

was applied for this exercise. In this, the energy changes due to the crack formations are used to 

equilibrate the internal energy at the time of the cracks. The internal energy in the system is given by the 

components: 

 

 0 aU U U U    Eq. 14 

where U is the total energy, U0 is the strain energy, Ua is the drop in energy due to a crack being formed 

and Uγ is the surface energy required to create a crack. The total and the strain energy reduce to 0 when a 

crack is being formed, giving: 

 aU U  Eq. 15 

where: 

 2 c g sU l h   Eq. 16 

In this, lc is the length of crack and γs is 3.9 J/m2 [43]. 

Ua is instead: 
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Δx and Δy are the dimension of each facet. Equating the energies lc for each facet can be found. This can 

then be used as an indication of the likely crack density at the facet. 



1.2.4. Post-crack solution 

The post-crack solution was derived representing the deformation of the system by assuming the presence 

of some yield lines which would act as hinges in the panel. All further deformation was assumed to take 

place between such locations and the supports, where the glazing presented a higher crack density and 

therefore a lower stiffness. This implied that the areas in between such lines would not undergo further 

deformation, potentially limiting the accuracy of the simulations. The implications of this assumption are 

discussed at length in the discussion section using the results of the validation presented below. 

A key requirement of the method was to choose the location of the yield lines. These parameters can 

influence the results significantly. The yield lines were assumed to be parallel to the window edge and to 

connect the junctions of these lines to the corners, as shown in Error! Reference source not found.. This 

was done with reference to the results obtained from both experimental and analytical results obtained 

previously [25]. 

 

Figure 6: Typical location of the yield lines assumed in the system. 

 



The critical parameters of the analysis are the dimensions P and Q. They were assumed to be determined 

by the location of the highest principal tensile stress derived in the elastic plate analysis. However, it was 

considered that, whilst this point would indicate the position of the finest cracks, a lower crack density 

could be sufficient to justify the positioning of the yield line. Therefore, it was decided to site the lines 

further towards the centre, at the point at which the crack concentration in the pane dropped below a 

predetermined percentage of the maximum. This percentage was determined through trial and error in test 

1 and finally it was decided that a value 60% below the peak crack concentration in each pane provided 

the best results and was kept constant in all cases. 

A basic equation for the full internal and external work equilibrium of a plate was given by Jones [44]: 
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Eq. 18 

where pi is the externally applied load in horizontal direction i (x or y), ui are the deformations in the 

horizontal directions, p3 is the out of plane load, w are the out of plane deflections, Nij are the membrane 

forces in direction ij, vi is the normal vector of each yield line, Mij is the bending moment in direction ij 

and s is an index varying from 1 to the total number of yield lines considered, r. The left hand side of the 

equation represent the external rate of work done on the system and the rate of change of the kinetic 

energy. The right hand side instead includes the components of the rate of change of the internal energy in 

the sample considered. These comprise the components due to the membrane forces and to the bending 

moments applied to the system. Both these are then considered both at the yield line locations, whose 

contributions are calculated through the line integrals, and in the areas between these locations, which are 

accounted for by the area integrals. 

The main assumption made in the mathematical derivation was that all the deformations were taken into 

account as if they took place at the yield lines locations. Therefore, all the area integrations could be 

assumed not to contribute to the internal work. Whilst, as indicated previously, the deformations in the 

system were assumed to occur in the areas between the yield lines and the supports, it was found to be 

convenient to calculate the displacements and hence the energy absorbed at the yield lines locations. The 

internal energy could then be integrated along such lines, simplifying the required algebra and the final 

differential equation. As a further simplification, the bending moments at the yield lines were assumed to 



be 0 and therefore were not considered in the final solution. The deflections ui and the in plane external 

forces were also assumed to be 0. Therefore Eq. 18 reduced to: 
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If only forces perpendicular to the yield lines are assumed, the right hand side of the equation can be 

proven to be equivalent to multiplying the membrane force by the rate of deformation of the membrane in 

the force direction. As this is a more convenient expression, it was used in this research: 
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where l is the length of the membrane.  

As shown in Error! Reference source not found., the area of the pane could be split into three zones. In 

the central area “a”, it was assumed that the material moved out of plane by a uniform deflection W. The 

external work was: 
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which, after solving the integral, becomes: 
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In the areas “b” and “c” the deflection was assumed to be equal to W at the central yield line location and 

to decrease linearly to 0 at the support. Substituting this into the equation, the external work for areas “b” 

and “c” were given respectively by: 
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In the equations above L, Q, B and P are defined as shown in Error! Reference source not found.. 

Therefore, after some simplification, the total external work and kinetic energy for a quarter area is given 

by: 
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The internal work needed to be calculated along lines 1, 2 and 3. Along line 1, the rate of change in length 

of the membrane is given by: 
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The material strain and strain rates can be shown to be equal to: 
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where ε1 is the strain of the material between line 1 and the top support. The stress in the membrane is: 
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With some algebraic manipulation, the internal energy is given by: 

 
 

1 1
2 2

0

L Q
WW L Q

h ldz h
P W

 



    




&
&  Eq. 29 

where z is a coordinate along the line length. A similar derivation for line 2 gives: 
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The derivation of the internal work for line 3 follows the same principle, although the algebra is more 

complex due to the varying deflection along the yield line and its inclined orientation. It can be proven 

though that the rate of change of length of the membrane between the line and the top support is: 
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where 2 2K P Q  is the length of the yield line.  The rate of change of length between the line and the 

side support is: 
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These results were used to derive a strain and strain rate level on both sides of the line. Finally, the stress 

on the two sides of the yield line was found to be equal to:  
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Therefore, the internal work calculated along this line was: 
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Combining the external and internal work components calculated above, the overall equilibrium 

differential equation could be constructed. After some simplification, this was found to be: 
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This equation was then solved using the material properties and loading described above. Matlab [45] was 

employed to produce a numerical solution. The pre-crack solution at the failure time was used to obtain 

the initial conditions of the deflection velocity and acceleration of the pane. It should be noted that the 

equations above were solved equating the change in external work with the changes in the internal and 

kinetic energies. As the strain energy accumulated before cracking was assumed to be dissipated with the 

failure of the glass layers, the system energy was not conserved. It was instead assumed that the internal 

energy would be zero at the beginning of the post crack deformation phase. This is similar to the 



assumptions made in single degree of freedom systems, where often the resistance function is assumed to 

decrease to close to zero at the glass failure deflection, dissipating significant amounts of energy [18]. 

Once the deflections were found, the reaction forces could also be calculated for comparison with the 

experimental results. To achieve this, the membrane force of each area was multiplied by the sine of the 

glass inclination angle to find the out of plane components, which were then plotted together with the data 

obtained in previous research [28] for Tests 1 to 3. 

2. Results 

2.1. Experimental 

The data collected during Test 4 were analysed as described above. The peak pressure estimated with 

Air3D was equal to 176 kPa, delivering a total impulse of 773 kPa ms. The CONWEP estimate used for 

the analytical simulation was as shown in table 1. 



 

Figure 7: DIC results for Test 4. 

 

The DIC data allowed the analysis of the pane deflections and strains. The results at a few time points are 

shown in Error! Reference source not found., where the general deflected shapes and principal strain 

distributions are presented alongside the experimental images. The central deflection is in Error! 

Reference source not found. below. This reached 200 mm at 12 ms. After this point the pane showed 

distinct signs of failure around the edges.  The data showed that the load deformed the window, producing 

the highest strain concentrations along lines parallel to the support frame, as was seen in previous tests 

[4]. These concentrations affected the distribution of the fractures of the glass, as can be seen by the 



higher strains along such a pattern at later times. The glass panes failed approximately 1.5 ms after the 

blast wave arrival.  

The ultimate failure was caused by a failure of the bond between the glass and the silicone. This was 

facilitated by the enamel coating, which could have weakened the adhesion between the two materials.  

2.2. Analytical calculations 

2.2.1. Pre-crack solution 

The solution detailed above was applied to Tests 1-3 as shown in previous research [25] and additionally 

to Test 4. The results of this analysis for the latter test are presented in Error! Reference source not 

found.. These showed that the technique could be applied successfully to glazing panes of different 

dimensions and aspect ratios to the ones considered previously. The predicted deflections tended to be 

close to the experimental records at the centre of the window, with a maximum difference of 2 mm. The 

shape nearer the supports was not approximated as closely as seen in previous tests. The experimental 

data suggests that significant support deflections, up to 5 mm, took place at this early stage, which would 

not have been modelled by the analytical method. The calculated crack concentrations are shown in 

Error! Reference source not found.. The analysis showed that the peak crack concentrations could be 

found near the corner of the pane. As was done in previous work [25], the crack concentration was 

expressed as the total crack length for each 10 mm x 10 mm facet. 

 

Figure 8: Test 4 pre-crack deflection along a centre line cut across the pane. Two time points are shown for 

clarity. 



 

Figure 9: Test 4 estimated crack spacing at 1.5 ms. 

 

 

2.2.2. Post-crack solution 

As described above, the pre-crack results were firstly employed to determine the position of the yield 

lines in the cases considered. A typical result, in this case for Test 3, is shown in Error! Reference 

source not found.. 

 

Figure 10: Yield line position in Test 3. The position is superimposed to the crack spacing results plot. 

 



The differential equation was then solved numerically for each case, employing the last step of the pre-

crack solution to provide the initial conditions for the displacement and velocities of the pane. Typical 

final results for Tests 1 to 4 are shown in Error! Reference source not found. and Error! Reference 

source not found., where the deflections along a cut across the centre of the window pane are compared 

with experimental deflections at the same time. 

The central deflections were also compared to estimate whether the overall dynamic behaviour 

corresponded to the experimental records with regards to its period and maximum deflections. These 

results are shown in Error! Reference source not found.. The data showed that in most cases the 

movements calculated with the present method were comparable with the experimentally recorded values. 

Test 2, 3 and 4 showed the most accurate results, with relative errors generally below 5%.  Test 1 instead 

showed the least accurate deflections, with a maximum relative error of 25%. In general, most 

discrepancies were due to the analytical solution underestimating the maximum deflections. In Tests 2 

and 3, the panes images were showing clear signs of edge failure at 13 ms and 7 ms respectively. 

Therefore, especially in the case of the latter test, it is possible that some of the discrepancies in the 

results were due to this. The only case where the deflections were overestimated was test 4. In this the 

analytical results showed a higher deceleration than the experimental measurements after 10 ms. The 

periods of the structures were also similar, with a similar deceleration observed in the experimental and 

analytical data.  

 



Figure 11: Post-crack results compared with experimental data at three time steps for tests 1 to 4 in the x 

direction. In these plots time = 0 ms is the glass failure time. 

 

Figure 12: Post-crack results compared with experimental data at three post-crack time steps for Tests 1 to 4 

in the y direction. In these plots, time = 0 ms is the glass failure time. 

 

Figure 13: Calculated and experimental central deflection for Tests 1 to 4. 

The total out of plane reaction forces were calculated for Tests 1 to 3 so as to compare them with the 

values from previous studies [28]. The values shown include the total reactions along the four edges of 

each pane. In all cases the calculated values were of similar magnitude to the experimentally estimated 



data.  The results for Test 1 agreed closely with the experimental estimates. Instead, in Tests 2 and 3 the 

analytical solution overestimated the reaction forces by up to 10.2 kN. A plateau level was present in all 

cases, showing that the simulated mechanism was realistic, though the forces predicted could be too high, 

as shown in Error! Reference source not found.. The more accurate prediction for Test 1 also indicated 

that the quality of this estimate was not affected by the correlation of the calculated and measured central 

deflections. 

The results of the sensitivity study are shown in Error! Reference source not found.. The curves 

indicated that all the parameters had an important effect on the model behaviour. Reduction in the 

impulse and in the positive phase duration in cases 1 and 3 caused a marked reduction in the 

deformations, whilst when these parameters were kept to a similar or higher level the changes in the 

central deflection seemed to be smaller. 

 

 



Figure 14: Out of plane reaction force calculated from the analytical solution results compared with the 

experimentally estimated values. 

 

 

 

Figure 15: Central out of plane deflection for the cases run as part of the sensitivity analysis on the blast pulse 

parameters. 

3. Discussion 

The experimental results showed that the larger pane behaved in a similar manner to the smaller windows 

considered before. The blast impulse and peak pressures were estimated to be relatively high and it is 

likely that this caused the bands of cracks to be close to the edge of the window and the post-crack 

deformations to remain concentrated in this narrower band. The elongated aspect ratio of the window did 

influence the few cracks which appeared in the central area later, which connected the two longer sides. 

The deflection at initial cracking could be estimated to be approximately 25 mm, lower than the 

previously analysed cases. The final deformation at ultimate failure was instead similar at close to 200 

mm, though the failure mechanism was different from those previously observed [4].  

Whilst it is unfortunate that no direct pressure measurement could be obtained during the test, the CFD  

and CONWEP analyses had proved to be accurate in previous cases [4]. Therefore it was decided to use 

numerical techniques as a data source to fit the simplified reflected pressure time history equation for the 

analytical solutions. Using this input, the pre-crack analysis displayed a good agreement with the 

experimental DIC data. The central deflections and the deflected shape were realistic, with the latter 



showing significant deflection and curvature peaks near the edges. Whilst, as mentioned above, the 

calculated magnitude of the movement was not as accurate away from the central plateau, the strain 

concentrations also mirrored the DIC results as can be seen comparing Error! Reference source not 

found. and Error! Reference source not found..  

The post-crack analysis produced realistic estimates of the deflections and reactions forces in most of the 

cases considered. Whilst all four cases showed higher discrepancies with the experimental results than the 

pre-crack solution, this could be expected since the complexity of the analysis was significantly increased 

after the glass crazed and a practical analytical model required a larger set of assumptions than the pre-

crack solution. The main assumption was that all further deformation would take place between the yield 

line locations and the supports. This implied that the central area of the glass would not deform after 

initial cracking. A second assumption was that the yield lines would not move throughout the analysis 

time. The results for Test 1 especially showed that these conditions were not always met. The DIC data 

indicated that the central area increased its curvature as time passed, and the yield line solution 

underestimated significantly the final deflection, with an error of 23%. The deflected shapes also showed 

that the position of the higher curvature point (the “yield line”) seemed to vary, shifting towards the 

centre of the window as time passed. This effect was significantly weaker in the cases where the blast 

loads were higher, such as Test 2, 3 and 4. In these tests, the DIC results indicated that the window 

deflected impulsively until ultimate failure was reached, with only small amounts of further deformation 

taking place in the window centre, and the analytical results were much closer to the experimental data.  

The assumed positon of the yield lines could also affect the results significantly. As explained above, this 

parameter was assumed to be related to the peaks in crack concentrations calculated in the pre-crack 

phase of the loading. However, it proved difficult to derive a physically based criterion to account for 

this. Instead, the empirical method described was used. Whilst this represents a less general solution, the 

limit used in this work was fitted to one case and used for the other blast loading and panes dimensions 

with good outcomes. It is therefore suggested that the proposed parameter is a good approximation for 

these common loading and structural details combinations. 

The small sensitivity study showed that the impulse and the positive load duration were the key 

parameters of the pressure function. The positive phase duration was similar to the time required to reach 

the maximum pane deformation and its failure. Therefore, a small reduction in the load time would have 

caused the negative loading phase to affect the deflections more significantly, causing the marked 



reduction in the central deflection seen in cases 1 and 3. Instead, whilst the changes in the impulse and 

pressure in cases 2 and 4 affected the overall results somewhat, these effects were much less significant, 

especially at later times. 

 

The pre-crack results for Test 4 show that the methods currently cannot account for support movement. 

However, this limitation seemed to be less important for the post crack solutions, which were accurate 

also for cases where more significant support movement was observed due to its relatively small 

magnitude of generally less than 10 mm. 

The reactions estimates produced results similar to the experimental values calculated in previous work 

[28]. It is likely that the discrepancies observed were due to the assumptions made. The reactions could 

have been especially affected by the yield lines movement in the tests. This meant that in the experiments 

the angle of the laminate remained approximately constant after reaching a maximum close to 30° [4], 

whilst in the simulations the inclination continued to increase, producing higher out of plane reaction 

forces.  

It should be noted that the results presented here were validated using blast tests with scaled distances 

between 3.6 m/kg1/3 and 5.3 m/kg1/3. At this level of loading, the glass panes generally behaved 

impulsively at the beginning of the loading, causing the observed pattern of cracks to form. This pattern 

was then used in this work to calculate the yield line position and to assume a deformation mechanism for 

the system. Should the loading be significantly lower than the levels considered here, it is possible that a 

more sinusoidal shaped deformation would be present before the glass failure, invalidating the basic 

assumptions used for the derivation. Additionally, as mentioned above, lower blast levels would also 

cause relatively more deformation in the central un-cracked area, as observed in the results for Test 1. 

However, such lower levels of loading might also represent a less critical case for the glazing, as its 

ultimate failure would be less likely. It is therefore suggested that the methods presented here, whilst 

unable to simulate the behaviour of all loading levels in their present state, could be useful for a critical 

range of blast pressures which can cause failures in the glazing system. The results indicated that these 

distances should not exceed significantly 5 m/kg1/3. With the available data it is more difficult to establish 

a lower limit, though it is likely that the system would be accurate at values lower than 3.6 m/kg1/3
 . 

Further research could be performed to improve on these issues. Ideally, a solution allowing the yield line 

positions to move should be developed, as this would resolve the issues encountered here. However, the 



present solution can already provide a powerful and fast tool to analyse laminated glazing panels up to 

their ultimate failure, providing guidance for the design of structures. 

4. Conclusions 

A yield line approximation was derived to model the post-crack behaviour of laminated glazing loaded by 

blast. Membrane forces were considered dominant for this phase of the deformation and the standard 

derivations available in literature had to be modified to account for this. Results from a previous 

analytical solution covering the pre-crack phase of deformations were employed to obtain the starting 

conditions of the panel after glass failure as well as likely positions of the yield lines. This new method 

was then applied to four blast tests to validate its results. These included the three blast tests considered 

when developing the pre-crack analytical solution and a new experiment conducted on a panel with a 

different aspect ratio and thicker make-up. The aim of this was also to verify whether such panes would 

behave similarly to the smaller units tested previously. The experimental results suggested that this was 

the case. The DIC technique was able to capture the deflections and strains, and hence the likely crack 

locations, well and the data could be used to validate the proposed analytical solutions. The ultimate 

failure mode of the pane also showed the importance of the bond between the glass and the supports, as in 

this case the pane capacity is likely to have been limited by the rebate joint failure. This was probably 

caused by the enamel coating employed, highlighting the effect of relatively minor aspects of glazing 

design.  

The analytical results indicated that the proposed method is able to represent the post-crack deformation 

of the panels. The central deflections were closely matched in three of the four tests, whilst the reactions 

magnitudes and time history behaviour were approximately reproduced in all cases. The results did 

though highlight some limitations in the proposed approach. One of the basic assumptions made was that 

all the deformation after the glass failure would take place at the yield lines, which was not the case in 

Test 1. Additionally, the yield lines were assumed not to move, which is likely to have caused the 

discrepancies in the reaction forces seen in Tests 2 and 3.  

There is scope to incorporate the possibility of deformations in the central, non-cracked area and for the 

yield lines to shift. However, the present results have produced realistic estimates of the system behaviour 

for this complex physical problem. It is, therefore, hoped that the method will be useful to produce safer 

and more economical glazing designs under these extreme conditions.  
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