111 research outputs found

    Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data

    Get PDF
    This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT), is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT). The acquired experience is discussed and the direction of further research is proposed

    Image Reconstruction Based on Deterministic and Heuristic Approach

    Get PDF
    The aim of this paper is to provide a survey of the recent development in new algorithms and techniques to solve the electrical impedance tomography (EIT) inverse problem. The EIT problem is nonlinear and ill-posed. The modified Newton-Raphson method with the Tikhonov regularization and the differential evolution algorithm are used to obtain high-quality reconstruction in EIT problems. Numerical results of the reconstruction based on both deterministic and heuristic methods are presented and compared. Finally, we provide recommendations of solutions of still open problems in this field

    Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure.

    Get PDF
    Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF

    Mitochondrial ATP synthase inhibition and nitric oxide are involved in muscle weakness that occurs in acute exposure of rats to monocrotophos

    Get PDF
    Organophosphate poisoning in the context of self-harm is a common medical emergency in Asia. Prolonged muscle weakness is an important but poorly understood cause of morbidity and mortality of the poisoning. This study examined mitochondrial function and its modulation by nitric oxide in muscle weakness of rats exposed to an acute, oral (0.8LD50) dose of monocrotophos. Muscle mitochondrial ATP synthase activity was inhibited in the rat in acute exposure to monocrotophos while respiration per se was not affected. This was accompanied by decreased mitochondrial uptake of calcium and increased levels of nitric oxide. Reactive cysteine groups of ATP synthase subunits were reduced in number, which may contribute to decreased enzyme activity. The decrease in ATP synthase activity and reactive cysteine groups of ATP synthase subunits was prevented by treatment of animals with the nitric oxide synthase inhibitor, L-NG Nitroarginine methyl ester, at 12 mg/kg body weight for 9 days in drinking water, prior to monocrotophos exposure. This indicated a role for nitric oxide in the process. The alterations in mitochondrial calcium uptake may influence cytosolic calcium levels and contribute to muscle weakness of acute organophosphate exposure

    Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance

    Get PDF
    A collection of 172 durum wheat landraces from 21 Mediterranean countries and 20 modern cultivars were phenotyped in 6 environments for 14 traits including phenology, biomass, yield and yield components. The genetic structure of the collection was ascertained with 44 simple sequence repeat markers that identified 448 alleles, 226 of them with a frequency lower than 5%, and 10 alleles per locus on average. In the modern cultivars all the alleles were fixed in 59% of the markers. Total genetic diversity was HT = 0.7080 and the genetic differentiation value was GST = 0.1730. STRUCTURE software allocated 90.1% of the accessions in five subpopulations, one including all modern cultivars, and the four containing landrace related to their geographic origin: eastern Mediterranean, eastern Balkans and Turkey, western Balkans and Egypt, and western Mediterranean. Mean yield of subpopulations ranged from 2.6 t ha-1 for the western Balkan and Egyptian landraces to 4.0 t ha-1 for modern cultivars, with the remaining three subpopulations showing similar values of 3.1 t ha-1. Modern cultivars had the highest number of grains m-2 and harvest index, and the shortest cycle length. The diversity was lowest in modern cultivars (HT = 0.4835) and highest in landraces from the western Balkans and Egypt (HT = 0.6979). Genetic diversity and AMOVA indicated that variability between subpopulations was much lower (17%) than variability within them (83%), though all subpopulations had similar biomass values in all growth stages. A dendrogram based on simple sequence repeat data matched with the clusters obtained by STRUCTURE, improving this classification for some accessions that have a large admixture. landraces included in the subpopulation from the eastern Balkans and Turkey were separated into two branches in the dendrogram drawn with phenotypic data, suggesting a different origin for the landraces collected in Serbia and Macedonia. The current study shows a reliable relationship between genetic and phenotypic population structures, and the connection of both with the geographic origin of the landraces.The research was funded by the Ministerio de Economía y competitividad project AGL-2006-09226-C02-01, and Dr. Jose Miguel Soriano is funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (http://www.mineco.gob.es/)

    Physical and Functional Interaction of NCX1 and EAAC1 Transporters Leading to Glutamate-Enhanced ATP Production in Brain Mitochondria

    Get PDF
    Glutamate is emerging as a major factor stimulating energy production in CNS. Brain mitochondria can utilize this neurotransmitter as respiratory substrate and specific transporters are required to mediate the glutamate entry into the mitochondrial matrix. Glutamate transporters of the Excitatory Amino Acid Transporters (EAATs) family have been previously well characterized on the cell surface of neuronal and glial cells, representing the primary players for glutamate uptake in mammalian brain. Here, by using western blot, confocal microscopy and immunoelectron microscopy, we report for the first time that the Excitatory Amino Acid Carrier 1 (EAAC1), an EAATs member, is expressed in neuronal and glial mitochondria where it participates in glutamate-stimulated ATP production, evaluated by a luciferase-luciferin system. Mitochondrial metabolic response is counteracted when different EAATs pharmacological blockers or selective EAAC1 antisense oligonucleotides were used. Since EAATs are Na+-dependent proteins, this raised the possibility that other transporters regulating ion gradients across mitochondrial membrane were required for glutamate response. We describe colocalization, mutual activity dependency, physical interaction between EAAC1 and the sodium/calcium exchanger 1 (NCX1) both in neuronal and glial mitochondria, and that NCX1 is an essential modulator of this glutamate transporter. Only NCX1 activity is crucial for such glutamate-stimulated ATP synthesis, as demonstrated by pharmacological blockade and selective knock-down with antisense oligonucleotides. The EAAC1/NCX1-dependent mitochondrial response to glutamate may be a general and alternative mechanism whereby this neurotransmitter sustains ATP production, since we have documented such metabolic response also in mitochondria isolated from heart. The data reported here disclose a new physiological role for mitochondrial NCX1 as the key player in glutamate-induced energy production

    Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects

    Get PDF
    Bystander effects induced by cytoplasmic irradiation have been reported recently. However, the mechanism(s) underlying, such as the functional role of mitochondria, is not clear. In the present study, we used either mtDNA-depleted (ρ0) AL or normal (ρ+) AL cells as irradiated donor cells and normal human skin fibroblasts as receptor cells in a series of medium transfer experiments to investigate the mitochondria-related signal process. Our results indicated that mtDNA-depleted cells or normal AL cells treated with mitochondrial respiratory chain function inhibitors had an attenuated γ-H2AX induction, which indicates that mitochondria play a functional role in bystander effects. Moreover, it was found that treatment of normal AL donor cells with specific inhibitors of NOS, or inhibitor of mitochondrial calcium uptake (ruthenium red) significantly decreased γ-H2AX induction and that radiation could stimulate cellular NO and O2•− production in irradiated ρ+ AL cells, but not in ρ0 AL cells. These observations, together with the findings that ruthenium red treatment significantly reduced the NO and O2•− levels in irradiated ρ+ AL cells, suggest that radiation-induced NO derived from mitochondria might be an intracellular bystander factor and calcium-dependent mitochondrial NOS might play an essential role in the process

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF
    corecore