735 research outputs found

    Gravel pits support waterbird diversity in an urban landscape

    Get PDF
    We assessed the benefit of 11 gravel pits for the settlement of waterbird communities in an urbanized area lacking natural wetlands. Gravel pits captured 57% of the regional species pool of aquatic birds. We identified 39 species, among which five were regionally rare. We used the Self Organizing Map algorithm to calculate the probabilities of presence of species, and to bring out habitat conditions that predict assemblage patterns. The age of the pits did not correlate with assemblage composition and species richness. There was a positive influence of macrophyte cover on waterbird species richness. Larger pits did not support more species, but species richness increased with connectivity. As alternative wetland habitats, gravel pits are attractive to waterbirds, when they act as stepping stones that ensure connectivity between larger natural and/or artificial wetlands separated in space

    Managing Successional Stage Heterogeneity to Maximize Landscape-Wide Biodiversity of Aquatic Vegetation in Ditch Networks

    Get PDF
    The presence of a high diversity of different successional stages in a landscape may help to conserve and promote landscape-wide biodiversity. A strategy to achieve this is using Cyclic Rejuvenation through Management (CRM), an approach employed in a variety of different ecosystems. CRM periodically resets the successional stages in a landscape. For aquatic systems this constitutes vegetation removal and dredging. For this approach to be useful (a) successional stages are required to be different in community composition and (b) these differences need to be caused by true replacement of species between stages. While potentially valid, these assumptions are not generally tested prior to application of CMR. In this study we test these assumptions to explore the usefulness of managing on successional stage heterogeneity for maximizing landscape-wide aquatic plant diversity. We carried out vegetation surveys in the ditch networks of 21 polder landscapes in Netherlands, each containing 24 ditch reaches. Using a clustering approach combined with insight from literature on vegetation succession in these systems we assigned our sampled communities to defined successional stages. After partitioning landscape diversity into its alpha and beta components, we quantified the relative importance of replacement among successional stages. Next, through scenario analyses based on simulations we studied the effects of reducing successional stage heterogeneity on landscape-wide biodiversity. Results showed that differences in community composition among successional stages were a potentially important factor contributing to landscape diversity. Early successional stages were characterized by higher replacement of species compared to late successional stages. In a scenario of gradual decrease of heterogeneity through the systematic loss of the earliest successional stages we found 20% of the species richness in a polder was lost, pointing toward the importance of maintaining early successional stages in a polder. This makes a compelling case for application of CRM within agricultural drainage ditch landscapes to maximize regional aquatic plant diversity. While applied to drainage ditch systems, our data-driven approach is broadly applicable to other systems and may help in providing first indications of the potential of the CRM approach. We argue that CRM may maintain and promote regional biodiversity without compromising the hydrological function of the systems

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    Report on the main activities undertaken and preliminary findings emerging from research on the CGIAR Targeting Agricultural Innovations and Ecosystem Services in the northern Volta basin (TAI) project

    Get PDF
    The CGIAR Water, Land and Ecosystems research project on Targeting Agricultural Innovations and Ecosystem Services in the northern Volta basin (TAI) is a two year project (2014-2016) led by Bioversity International in collaboration with 11 institutes: CIAT, CIRAD, International Water Management Institute (IWMI), King’s College London (KCL), SNV World Burkina Faso (SNV), Stanford University, Stockholm Resilience Centre (SRC), University of Development Studies Ghana (UDS), University of Minnesota, University of Washington, and the World Agroforestry Institute. We are working with communities across Centre-Est Burkina Faso and Upper-East Ghana to gather empirical data, test research methodologies and co-develop knowledge on solutions to ecosystem service management challenges. Results from the project are still emerging and will continue to do so into 2017 as the team finish analysing the data and writing up their findings. This report presents the main activities accomplished and preliminary headline messages from the first 18 months of the project. Final results from the project will be made available in 2017 on the WLE website

    Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets

    Get PDF
    PMID: 20426000International audienceWe propose a new methodology to analyze the anatomical variability of a set of longitudinal data (population scanned at several ages). This method accounts not only for the usual 3D anatomical variability (geometry of structures), but also for possible changes in the dynamics of evolution of the structures. It does not require that subjects are scanned the same number of times or at the same ages. First a regression model infers a continuous evolution of shapes from a set of observations of the same subject. Second, spatiotemporal registrations deform jointly (1) the geometry of the evolving structure via 3D deformations and (2) the dynamics of evolution via time change functions. Third, we infer from a population a prototype scenario of evolution and its 4D variability. Our method is used to analyze the morphological evolution of 2D profiles of hominids skulls and to analyze brain growth from amygdala of autistics, developmental delay and control children

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Open access resources for genome-wide association mapping in rice.

    Get PDF
    Increasing food production is essential to meet the demands of a growing human population, with its rising income levels and nutritional expectations. To address the demand, plant breeders seek new sources of genetic variation to enhance the productivity, sustainability and resilience of crop varieties. Here we launch a high-resolution, open-access research platform to facilitate genome-wide association mapping in rice, a staple food crop. The platform provides an immortal collection of diverse germplasm, a high-density single-nucleotide polymorphism data set tailored for gene discovery, well-documented analytical strategies, and a suite of bioinformatics resources to facilitate biological interpretation. Using grain length, we demonstrate the power and resolution of our new high-density rice array, the accompanying genotypic data set, and an expanded diversity panel for detecting major and minor effect QTLs and subpopulation-specific alleles, with immediate implications for rice improvement.Article number:10532
    • …
    corecore