347 research outputs found
Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease.
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes
Quantum dot labelling of adenovirus allows for highly sensitive single cell flow and imaging cytometry
A quantum dot method for highly efficient labelling of single adenoviral particles is developed. The technique has no impact on viral fitness and allows the imaging and tracking of virus binding and internalisation events using a variety of techniques including imaging cytometry and confocal microscopy. The method is applied to characterise the tropism of different adenoviral vectors
Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study
Background: High-grade gliomas (HGG) are malignant brain tumors associated with frequent recurrent disease. Clinical management of HGG patients is currently devoid of blood biomarkers for early diagnosis, monitoring therapeutic effects and predicting recurrence. Different circulating miRNAs, both free and associated with exosomes, are described in patients with HGG. We previously identified miR-21, miR-222 and miR-124-3p purified from serum exosomes as molecular signature to help pre-operative clinical diagnosis and grading of gliomas. The aim of the present study was to verify this signature as a tool to assess the effect of treatment and for the early identification of progression in newly diagnosed HGG patients. Material and Methods: Major inclusion criteria were newly diagnosed, histologically confirmed HGG patients, no prior chemotherapy, ECOG PS 0-2 and patients scheduled for radiochemotherapy with temozolomide as first-line treatment after surgery. RANO criteria were used for response assessment. Serum was collected at baseline and subsequently at each neuroradiological assessment. mir-21, -222 and -124-3p expression in serum exosomes was measured in all samples. Results: A total number of 57 patients were enrolled; 41 were male, 52 with glioblastoma and 5 with anaplastic astrocytoma; 18 received radical surgery. HGG patients with higher exosomal miRNA expression displayed a statistically significant lower progression-free survival and overall survival. Increased expression of miR-21, -222 and -124-3p during post-operative follow-up was associated with HGG progression. Conclusions: These data indicate that miR-21, -222 and -124-3p in serum exosomes may be useful molecular biomarkers for complementing clinical evaluation of early tumor progression during post-surgical therapy in patients with HGG
Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression
<p>Abstract</p> <p>Background</p> <p>The transcription factor NF-kappaB is a very interesting target molecule for the design on anti-tumor, anti-inflammatory and pro-apoptotic drugs. However, the application of the widely-used molecular docking computational method for the virtual screening of chemical libraries on NF-kappaB is not yet reported in literature. Docking studies on a dataset of 27 molecules from extracts of two different medicinal plants to NF-kappaB-p50 were performed with the purpose of developing a docking protocol fit for the target under study.</p> <p>Results</p> <p>We enhanced the simple docking procedure by means of a sort of combined target- and ligand-based drug design approach. Advantages of this combination strategy, based on a similarity parameter for the identification of weak binding chemical entities, are illustrated in this work with the discovery of a new lead compound for NF-kappaB. Further biochemical analyses based on EMSA were performed and biological effects were tested on the compound exhibiting the best docking score. All experimental analysis were in fairly good agreement with molecular modeling findings.</p> <p>Conclusion</p> <p>The results obtained sustain the concept that the docking performance is predictive of a biochemical activity. In this respect, this paper represents the first example of successfully individuation through molecular docking simulations of a promising lead compound for the inhibition of NF-kappaB-p50 biological activity and modulation of the expression of the NF-kB regulated IL8 gene.</p
miRNAs in serum exosomes for differential diagnosis of brain metastases
Circulating miRNAs are increasingly studied and proposed as tumor markers with the aim of investigating their role in monitoring the response to therapy as well as the natural evolution of primary or secondary brain tumors. This study aimed to evaluate the modulation of the expression of three miRNAs, miR-21, miR-222 and miR-124-3p, in the serum exosomes of patients with high-grade gliomas (HGGs) and brain metastases (BMs) to verify their usefulness in the differential diagnosis of brain masses; then, it focused on their variations following the surgical and/or radiosurgical treatment of the BMs. A total of 105 patients with BMs from primary lung or breast cancer, or melanoma underwent neurosurgery or radiosurgery treatment, and 91 patients with HGGs were enrolled, along with 30 healthy controls. A significant increase in miR-21 expression in serum exosomes was observed in both HGGs and BMs compared with healthy controls; on the other hand, miR-124-3p was significantly decreased in BMs, and it was increased in HGGs. After the surgical or radiosurgical treatment of patients with BMs, a significant reduction in miR-21 was noted with both types of treatments. This study identified a signature of exosomal miRNAs that could be useful as a noninvasive complementary analysis both in the differential diagnosis of BMs from glial tumors and in providing information on tumor evolution over time
A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1
(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF
- …
