59 research outputs found

    Galactic Evolution Of D And 3He Including Stellar Production Of 3He

    Get PDF
    New stellar models which track the production and destruction of 3^3He (and D) have been evolved for a range of stellar masses (0.65≀M/M⊙≀100)(0.65\leq M/M_{\odot}\leq 100), metallicities (0.01≀Z/Z⊙≀1)(0.01 \leq Z/Z_{\odot} \leq 1) and initial (main sequence) 3^3He mass fractions (10−5≀X3,MS≀10−3)(10^{-5} \leq X_{3,MS} \leq 10^{-3}). Armed with the 3^3He yields from these stellar models we have followed the evolution of D and 3^3He using a variety of chemical evolution models with and without infall of primordial or processed material. Production of new 3^3He by the lower mass stars overwhelms any reasonable primordial contributions and leads to predicted abundances in the presolar nebula and/or the present interstellar medium in excess of the observationally inferred values. This result, which obtains even for zero primordial D and 3^3He, and was anticipated by Rood, Steigman \& Tinsley (1976), is insensitive to the choice of chemical evolution model; it is driven by the large 3^3He yields from low mass stars. In an attempt to ameliorate this problem we have considered a number of non-standard models in which the yields from low mass stars have been modified. Although several of these non-standard models may be consistent with the 3^3He data, they may be inconsistent with observations of 12^{12}C/13^{13}C, 18^{18}O and, most seriously, the super-3^3He rich planetary nebulae (Rood, Bania \& Wilson 1992). Even using the most extreme of these non-standard models (Hogan 1995), we obtain a generous upper bound to pre-galactic 3^3He: X3P≀3.2×10−5_{3P} \leq 3.2 \times10^{-5} which, nonetheless, leads to a stringent lower bound to the universal density of nucleons.Comment: 21 pages, plus 10 figures, accepted by Ap

    Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of low-mass Red Giants

    Get PDF
    Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the 3He(3He,2p)4He reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of 3He overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low mass giants, a problem of more than 3 decades' standing. This mixing mechanism, which we call `ΎΌ\delta\mu-mixing', operates rapidly (relative to the nuclear timescale of overall evolution, ~ 10^8 yrs) once the hydrogen burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Pop I stars between 0.8 and 2.0\Msun develop 12C/13C ratios of 14.5 +/- 1.5, while Pop II stars process the carbon to ratios of 4.0 +/- 0.5. In stars less than 1.25\Msun, this mechanism also destroys 90% to 95% of the 3He produced on the main sequence.Comment: Final accepted version (submitted to Astrophys J in Jan 2007...

    Deep Mixing of He-3: Reconciling Big Bang and Stellar Nucleosynthesis

    Get PDF
    Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing He-3, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of He-3 with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that He-3 production in low-mass stars poses to the Big Bang nucleosynthesis of He-3.Comment: Accepted by Science, and available from Science Express onlin

    Glitter and Glints on Water

    Get PDF
    We present new observations of glitter and glints using short and long time exposure photographs and high frame rate videos. Using the sun and moon as light sources to illuminate the ocean and laboratory water basins, we found that (1) most glitter takes place on capillary waves rather than on gravity waves, (2) certain aspects of glitter morphology depend on the presence or absence of thin clouds between the light source and the water, and (3) bent glitter paths are caused by asymmetric wave slope distributions We present computer simulations that are able to reproduce the observations and make predictions about the brightness, polarization, and morphology of glitter and glints. We demonstrate that the optical catastrophe represented by creation and annihilation of a glint can be understood using both ray optics and diffraction theory. (C) 2011 Optical Society of Americ

    Evolutionary tracks for Betelgeuse

    Full text link
    We have constructed a series of non-rotating quasi-hydrostatic evolutionary models for the M2 Iab supergiant Betelgeuse (α Orionis\alpha~Orionis). Our models are constrained by multiple observed values for the temperature, luminosity, surface composition and mass loss for this star, along with the parallax distance and high resolution imagery that determines its radius. We have then applied our best-fit models to analyze the observed variations in surface luminosity and the size of detected surface bright spots as the result of up-flowing convective material from regions of high temperature in the surface convective zone. We also attempt to explain the intermittently observed periodic variability in a simple radial linear adiabatic pulsation model. Based upon the best fit to all observed data, we suggest a best progenitor mass estimate of 20−3+5M⊙ 20 ^{+5}_{-3} M_\odot and a current age from the start of the zero-age main sequence of 8.0−8.58.0 - 8.5 Myr based upon the observed ejected mass while on the giant branch.Comment: 27 pages, 11 figures, Revised per referee suggestions, Accepted for publication in the Astrophysical Journa

    The Destruction of 3He by Rayleigh-Taylor Instability on the First Giant Branch

    Get PDF
    Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing 3He, which they mix into the convective envelope on the giant branch and distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the observed cosmic abundance of 3He with the predictions of Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell. In this zone the burning of the 3He left behind by the retreating convective envelope is predominantly by the reaction 3He + 3He -> 4He + 2p, a reaction which, untypically for stellar nuclear reactions, {\it lowers} the mean molecular weight, leading to a local minimum. This local minimum leads to Rayleigh-Taylor instability, and turbulent motion is generated which will continue ultimately up into the normal convective envelope. Consequently material from the envelope is dragged down sufficiently close to the burning shell that the 3He in it is progressively destroyed. Thus we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He. Some slow mixing mechanism has long been suspected, that connects the convective envelope of a red giant to the burning shell. It appears to be necessary to account for progressive changes in the 12C/13C and 14N/12C ratios on the First Giant Branch. We suggest that these phenomena are also due to the Rayleigh-Taylor-unstable character of the 3He-burning region.Comment: Paper presented at IAU-GA, Prague, August 200

    Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    Get PDF
    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'

    Synthesis of the elements in stars: forty years of progress

    Full text link

    Spectroscopic Survey of the Galaxy with Gaia II. The expected science yield from the Radial Velocity Spectrometer

    Get PDF
    The Gaia mission is designed as a Galaxy explorer, and will measure simultaneously, in a survey mode, the five or six phase space parameters of all stars brighter than 20th magnitude, as well as providing a description of their astrophysical characteristics. These measurements are obtained by combining an astrometric instrument with micro-arcsecond capabilities, a photometric system giving the magnitudes and colours in 15 bands and a medium resolution spectrograph named the Radial Velocity Spectrometer (RVS). The latter instrument will produce spectra in the 848 to 874 nm wavelength range, with a resolving power R = 11 500, from which radial velocities, rotational velocities, atmospheric parameters and abundances can be derived. A companion paper (Katz et al. 2004) presents the characteristics of the RVS and its performance. This paper details the outstanding scientific impact of this important part of the Gaia satellite on some key open questions in present day astrophysics. The unbiased and simultaneous acquisition of multi-epoch radial velocities and individual abundances of key elements in parallel with the astrometric parameters is essential for the determination of the dynamical state and formation history of our Galaxy. Moreover, for stars brighter than V=15, the resolving power of the RVS will give information about most of the effects which influence the position of a star in the Hertzsprung-Russell diagram, placing unprecedented constraints on the age, internal structure and evolution of stars of all types. Finally, the RVS multi-epoch observations are ideally suited to the identification, classification and characterisation of the many types of double, multiple and variable stars.Comment: 33 pages, 11 figures, in press at MNRAS. Figs 1, 3 and 9 included at reduced resolution; available in full resolution at http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1365-2966.2005.09012.
    • 

    corecore