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ABSTRACT

Three-dimensional stellar modeling has enabled us to identify a deep-mixing

mechanism that must operate in all low mass giants. This mixing process

is not optional, and is driven by a molecular weight inversion created by the
3He(3He,2p)4He reaction. In this paper we characterize the behavior of this mix-

ing, and study its impact on the envelope abundances. It not only eliminates the

problem of 3He overproduction, reconciling stellar and big bang nucleosynthesis

with observations, but solves the discrepancy between observed and calculated

CNO isotope ratios in low mass giants, a problem of more than 3 decades’ stand-

ing. This mixing mechanism operates rapidly once the hydrogen burning shell

approaches the material homogenized by the surface convection zone. In agree-

ment with observations, Pop I stars between 0.8 and 2.0M� develop 12C/13C

ratios of 14.5 ± 1.5, while Pop II stars process the carbon to ratios of 4.0 ± 0.5.

In stars less than 1.25M�, this mechanism also destroys 90% to 95% of the 3He

produced on the main sequence.

Subject headings: stars: red giants; abundance anomalies

1. Introduction

In a previous paper (Dearborn et al. 2006; hereinafter Paper I) we used a fully 3-

dimensional code Djehuty, developed in the Lawrence Livermore National Laboratory, to

investigate the onset of the helium flash in a low-mass red giant. While convective motion
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due to the helium flash was seen to occur in much the same region as predicted by one-

dimensional (spherically symmetric) models, we noticed some minor motion, apparently also

of a turbulent convective character, in an unexpected region: a region above but not far above

the hydrogen-burning shell, and well below the base of the conventional surface convection

zone. This is visible in Fig. 14 of Paper I. On subsequent close inspection we found that this

additional motion was due to a very small molecular-weight inversion, which was Rayleigh-

Taylor unstable. This inversion in turn was due to the burning of 3He, of which quite a high

concentration is left by the retreating surface convection zone.

In two futher papers (Eggleton et al. 2006a,b; hereinafter Papers II, III) we showed why

such an inversion is expected to arise, once the surface convection zone, having reached its

deepest extent, begins to retreat. Furthermore, we suggested that this motion should grow

in extent so that it reaches from the base of the normal surface convection zone downwards

to the point where 3He is able to burn. It should lead to the destruction of most ( > 90%)

of the 3He in the surface layers, and it should simultaneously allow for some processing of
12C to 13C. Thus at the surface of the star 3He should be progressively depleted, and 13C

progressively enhanced, beyond the values expected from conventional 1D models.

In this paper we consider further the effect of our additional mixing, which we refer

to as ‘µ-boosted mixing’. We would like to emphasise that this mixing can explain in a

natural way observed abundances that have hitherto been attributed to ad hoc mechanisms

like rotation and magnetic fields. We would also like to emphasise the value of 3D modeling.

It was only by using a fully 3D model that this mixing was noticed. It is due to a very slight

effect, a µ-inversion that amounts to only about one part in 104, and yet it is quite obvious

in a 3D simulation. One can in fact see the inversion in 1D models – although we are not

aware that anyone has actually commented on it – but in 1D models mixing only sets in if

the code-developer tells the code to include it.

3D simulations are expensive of computer time. Our philosophy in using Djehuty has

been that 3D simulations spanning a short period of time may allow us insight into complex

hydrodynamic and hydromagnetic phenomena which will then enable us to improve the

quality of simplistic 1D models. We follow this principle here. We introduce into our 1D

code a convective mixing coefficient that depends on the µ-gradient, but only if the µ-gradient

is in the sense that it is destabilising. This is in addition to the mixing coefficient that is due

to ordinary convective instability, which depends (crudely speaking) on the entropy gradient

but also only if this gradient has the sign which is destabilising.

In Section 2 we discuss the significance of possible mixing for abundance measurements

on the Giant Branch. In Section 3 we discuss our new µ-boosted mixing mechanism in

more detail. In Section 4 we describe a 1D code which incorporates a simple model of our
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µ-boosted mixing. In Sections 5 and 6 we discuss the sensitivity of this model to some input

parameters that we estimate. In Sections 7 – 12 we present our results and conclusions.

2. The Importance of Mixing on the Giant Branch

There is a long history of observing the carbon, nitrogen and oxygen (CNO) isotope

ratios in Red Giants (Lambert & Dearborn 1972, Day et al. 1974, Dearborn et al. 1975,

1976, Tomkin et al. 1975, 1976, Tomkin & Lambert 1978, Harris & Lambert 1984a,b, Gilroy

1989) as a probe of stellar interiors and evolution. While on the main sequence, nuclear

reactions change the abundance distribution in a star’s deep envelope. These changes are

then mixed to the surface when the star becomes a giant. Among the isotopes that are

substantially enhanced by low mass stars are 3He, 13C and 17O. Other isotopes like 15N

and 18O are reduced. Distressingly, these ratios were nearly always different from what was

expected, and sometimes very different (Dearborn et al. 1976, Dearborn 1992).

Figure 1 – Composition structure of a 0.85M� Pop I model (left) near the end of its main-

sequence life, and (right) near the deepest penetration of the surface convective region on

the giant branch. 1H – vermilion; 4He – magenta; 12C – black; 16O – blue; 12C – green; 3He

– red dots; 13C – black dots.

A result of giant-branch abundance changes that is of particular consequence is the

robust result that low mass stars (below ∼ 1.5M�) are major producers of 3He. In these

stars, the PP chain produces a 3He-rich peak in the envelope of the star. Giant-branch

convection homogenizes this region, raising the surface 3He abundance by a factor of ∼ 80
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(see Fig. 1). As the helium core grows some 3He is destroyed; however, in classical 1D

models, the fractional abundance of 3He in the convective envelope is not diminished, even

although the extent of the envelope (in terms of mass fraction) is diminished. The presence

of horizontal branches in the HR diagrams of globular clusters can be understood only if

substantial amounts of envelope mass are lost on the giant branch. This should result in a

substantial enhancement of the 3He in the interstellar medium, by low mass stars of both

Pop I and Pop II (Dearborn et al. 1986, Steigman et al. 1986, Dearborn et al. 1996). Work

by Hata et al. (1995) argued that unless > 90% of this 3He is destroyed prior to ejection, the

results of stellar nucleosynthesis come into conflict with standard Big Bang Nucleosynthesis.

To avoid this, there must be some mechanism that operates well before the helium core flash

to destroy the 3He.

Smith & Tout (1992) and Wasserburg et al. (1995) posited that a deep circulation

mechanism could solve the problem of low 12C/13C values observed in red giants, and destroy

the excess 3He at the same time. Mechanisms have been explored that might cause anomalous

deep mixing, including magnetic-field generation (Hubbard & Dearborn 1980) or rotational

mixing (Charbonnel 1995, Chaname et al. 2005, Palacios et al. 2006). The necessity for

some deep mixing was also discussed by Hogan (1995).

To destroy the necessary 3He, any such mechanism must operate efficiently in nearly

all low mass stars. While rotation is certainly present in young stars it is observed to decay

on the main sequence. The slow rotation speeds seen in white dwarfs, and the rotation

rate inferred in the Solar core by helioseismology, suggest that angular momentum is not

conserved in the cores either. As a consequence, dependence on the ability of rotation to

destroy the excess 3He in all long-lived stars is unsettling. Nevertheless, rotational mixing

must surely exist as an added mechanism in some stars.

Here, we wish to extend the results obtained on a new mixing mechanism, described

by Eggleton et al. (2006a, b; henceforth Papers II and III), that operates efficiently in

all low mass stars. This new mechanism is not optional: it inevitably arises on the First

Giant Branch when the hydrogen-burning shell encroaches on the homogenised, formerly

convective, zone left behind by the retreating convective envelope, and begins to burn 3He.

The 3He burning occurs just outside the normal hydrogen-burning shell, at the base of a

radiatively stable region about 1R� in thickness. The burning causes a molecular weight

inversion, which creates a Rayleigh-Taylor instability that drives mixing all the way to the

usual convection zone. As we will show, it not only routinely destroys > 90% of the 3He

produced in the low-mass offenders, but reduces the 12C/13C ratios from the range of 20 to

35 down to the observed values between 5 and 15, depending on metallicity..
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3. The µ-Boost Mechanism

As described above, this mixing mechanism is activated when the hydrogen-burning

shell approaches the homogenized region left behind by the retreating surface convection

zone. 3He is among the most fragile nuclei present, and the reaction

3He (3He,2p) 4He , (1)

has the unusual characteristic (among reactions in stars) of lowering the mean molecular

weight µ, creating a localised µ-inversion. This inversion is only about 0.025R� above the

helium (X = 0) core, and has the lowest molecular weight in the entire star (Fig. 2).

We emphasise that the 3He-burning at this stage produces an inversion only because of

the previous homogenisation of the outer layers by the surface convection. Substantial 3He

is produced early in the star’s life (i.e. on the main sequence) and would certainly be burnt

later when the hydrogen-burning shell has moved out far enough. But there would be no

µ-inversion, because the 3He peak would be superimposed on a 1H/4He gradient that gives

a strongly stabilising µ-gradient. However when the entire outer layers are homogenised

by convection, and then later gradually released towards the burning shell, the background

gradient has been removed and so the inversion can stand out (even though it is very small;

see Fig. 2).

Figure 2 – The development of a molecular-weight inversion is shown (versus mass) for

a 1.0M� Pop I model. 1/µ curves are shown for million-year increments beginning at

11.67 Gyr.

As shown in Paper II, such an inversion leads to rapidly rising clouds of hydrogen-

enhanced, 3He-depleted material. A simple buoyancy argument was used to estimate the rise
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rate of these clouds to be of order 100 m/s, only modestly slower than the speeds expected

in the convection region itself, and our three-dimensional modeling of a 1M� (Z = 0.02)

star using the LLNL code Djehuty (Papers I, II) did indeed show such speeds. As these

clouds rise (Fig. 3), they are replaced with 3He-rich material, and the process is continued.

If such speeds are maintained, the low-molecular-weight material will reach the convection

zone in a few months. This is to be compared to the hundreds of millions of years required

for a low mass star to reach the helium flash after this µ-boosted process begins.

Figure 3 – the location of the hydrogen burning shell is shown by a blue contour at a fixed

mass fraction of 14N. Shown in red are rising clouds in which the hydrogen abundance is

marginally higher than in the surrounding material.

The disparity of the mixing to evolutionary timescale is such that Paper III used an

instantaneous mixing approximation and the temperature/density structure of the stable

region to estimate the amount of 3He-processing. In the time taken by a 1M� star to evolve

up the giant branch, the 3He in the envelope was expected to decline by about 3 e-folds or

95%. A similar estimate for 12C-processing indicated that 12C would decrease by about 8%.

While modest, this is sufficient to reduce the 12C/13C ratio from 25 to near 15.

This analytic calculation suggested that the µ-boosted mixing might solve more than the

conflict between the Big Bang nucleosynthesis and stellar evolution as to which produced the
3He. It has the potential to solve many of the CNO isotope anomalies. Weiss & Charbonnel

(2004) have identified the point where CNO composition differences (from expected values)

begin to occur as ‘where the hydrogen-burning shell encounters the deepest point to which

the convective envelope ever reached’, and this is just where the µ-boost mechanism becomes
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operational.

To examine this possibility quantitatively, we have incorporated a µ-boosted mixing

model into a 1D stellar evolution code. The code tracks 16 isotopes, including all stable

isotopes of the CNO tri-cycle: 1H, 2H, 3He, 4He, 12C, 13C, 14N, 15N, 16O, 17O, 18O, 20Ne,
21Ne, 22Ne, 23Na, 1n. They are coupled through reaction rates taken from Caughlan & Fowler

(1988). Following their recommendation, in reactions like 17O(p,α)14N and 17O(p,γ)18F that

have an uncertain factor (0 to 1) on certain states, the factor was chosen to be 0.1. As

discussed by Dearborn (1992), these factors are significant for the expected oxygen isotope

ratios. In the sections below, this model will be tested and used to explore a range of masses

and metallicities.

4. The Speed of µ-Boosted Mixing

In the absence of µ-boosted mixing, the magnitude of the inversion depends on the
3He abundance. The temperature in the region where 3He is burned is >

∼ 107K, so that the

material is fully ionised. The mean molecular weight is

1

µ
=

∑

i

(Z1 + 1)Xi

Ai
. (2)

The 3He cross-section is larger than other rates, resulting in the production of 4He and 1H

and reducing the molecular weight. Through reaction (1) µ decreases by an amount that

depends on the change in the 3He mass fraction:

δµ

µ2
=

δX3

6
< 0 . (3)

The nuclear reaction is exothermic, and the daughter particles are produced with energies

substantially above the temperature of the surrounding medium. However for present pur-

poses let us ignore this and consider only the effect of the molecular weight change, holding

the temperature to be the same. For an ideal gas the mean µ change (δµ < 0) increases the

pressure:
δP

P
= −

δµ

µ
= −

µδX3

6
. (4)

To maintain hydrostatic equilibrium the gas expands, the density drops, and the element of

fluid becomes buoyant. We (Paper II) used an energy argument to estimate that the element

rises at a speed

v ∼

(

ghP

|δµ|

µ

)1/2

∼ 200m/s , (5)
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g being the local gravity and hP the local pressure scale height. This estimate is about

half that expected near the base of the normal surface convection zone. Initial speeds of

this magnitude were confirmed through 3D modeling with the LLNL code Djehuty. As it

rises, the density drops in both the bubble and the surrounding environment. Assuming no

enhancement in temperature from the 3He burning, the initial density deficit in the bubble

(compared to its surroundings) is

(

δρ

ρ

)

init

=
µδX3

6
. (6)

Because the surroundings are stable against normal convection, the density outside the

bubble will drop at a rate that differs from that in the bubble itself. The bubble will cease

being buoyant after some distance δr when the density and pressure of the bubble both equal

those of the surroundings:

δρinit = δρrad − δρad = − ρ(∇rad −∇ad)
d lnP

dr
δr , (7)

so that

δr ≈
hP µ |δX3|

6(∇rad −∇ad)
. (8)

Evaluating this for a 1M� Pop I star just after the inversion starts, we find that the bubbles

will rise all the way to the normal convection zone (∆r ∼ 3 × 105 km) if the envelope were

pure 3He. But the mass fraction is only ∼ 10−3, and so the bubbles could rise for ∼ 3×102km

before coming into density and pressure equilibrium with the surroundings.

Our Djehuty calculation began from an artificial situation, in that the µ-inversion had

been allowed to grow to its maximum size already in the previous 1D calculation. We

therefore see rather rapid motion setting in rather quickly. In practice, the motion should

have started as soon as the inversion began, and the motion set up by that, though slower,

would have prevented the inversion building up to the size that we see in Fig. 2. We attempt

to make a realistic estimate of the slower motion that we would expect to be set up in a

roughly steady state.

In a real stellar environment the buoyancy will begin when only a fraction of the 3He

is processed, and it will move only a short distance before coming to hydrostatic equilib-

rium. When the bubble reaches this new equilibrium, its temperature will be lower than its

surroundings by an amount
δT

T
=

δµ

µ
. (9)

Heat will diffuse in, and the bubble will continue to rise on a thermal timescale. As a crude

estimate we can take the mixing time to be of the same order as the thermal timescale,



– 9 –

defined as the thermal energy in the radiative layer divided by the luminosity, i.e. about

τ ∼ 5000 yrs. This gives an estimate (probably a considerable underestimate) of the mixing

speed:

v >
∆r

τ
∼ 0.2 cm/s . (10)

We attempt to make a somewhat sharper estimate of the speed with which the bubble

will rise. Consider a bubble of radius l with lower-µ material. The rate with which heat

energy enters the bubble can be estimated as

F ∼ 4πl2 . acT 3δT ∼ 4πl2acT 4
|δµ|

µ
. (11)

As flux enters the low-temperature region, the temperature increases at a rate that depends

on the volume:

F ∼
4

3
π l3

3

2

ρN0k

µ

dT

dt
, (12)

and so
dT

dt
∼

2acT 4

ρN0kl
|δµ| . (13)

The temperature gradient that must be overcome is

dT

dr
=

T

P
∇rad gρ . (14)

This is accomplished as energy flows into the bubble resulting in a rise velocity of

v ∼
dT/dt

dT/dr
∼

2acT 4

glρ∇rad

|δµ|

µ
. (15)

The factor |δµ|/µ is set at the deepest level of the mixing region where the heat from the

H-burning shell drives the 3He reaction. This gives

|δµ|

µ
= −

µδX3

6
=

lµ

6v

dX3

dt
=

1

2
N0ρ

(

X3

3

)2

Rnuc

lµ

6v
, (16)

where Rnuc is the thermal average of reaction cross-section times speed. Then combining

(15) and (16),

v2 =
acT 4N0Rnucµ

6g∇rad

(

X3

3

)2

. (17)

Evaluating these terms in the region where 3He is burned, for a 1M� Pop I star, gives a

rising speed in the bubble of ∼ 2 cm/s. This is a good deal smaller than the estimate (5), but

an order of magnitude above the crude estimate (10), and is limited by the burning rate of
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3He. It applies only while the bubble of low µ is establishing itself, during which the µ-deficit

reaches
|δµ|

µ
∼ 5 × 10−9 . (18)

Once |δµ|/µ is established, it can be held constant and equation (15) used to calculate the

speed. This speed will be typically somewhat larger than the initial speed.

Averaged over the classically stable region, equation (15) in Pop I models show speeds

of ∼ 1 − 2m/s. Pop II models develop lower |δµ|/µ values, and average velocities nearer

0.5m/s. This estimate was repeated for several core masses as the model evolved up the

FGB, resulting in mixing times of between 10 and 50 years. Models of different mass were also

examined, with the result that lower-mass models mix somewhat more slowly and higher-

mass models somewhat faster. Still, for Pop I models the mixing timescale was under 100

years (Fig. 4).

Figure 4 – Mixing times along the giant branch, for Pop I and Pop II models with a range

of masses.

Extreme Pop II models (Z = 0.0001) were also examined. The initial mixing in these

models starts at higher temperatures, resulting in greater values of |δµ|/µ. The mixing

timescales start near 10 years for all the masses examined. However, as these models evolved

the timescal rapidly increased to ∼ 100 years. This is probably a result of the rapid destruc-

tion of 3He. A mixing time of 100 years is about 0.01% of the time to burn through the
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classically stable region. We can argue that the classically stable region will be homogenised

with the classically convective surface zone on a short timescale.

The process of thermally-driven buoyancy described by equation (15) should leave the

temperature gradient radiative, but leads to elongated vertical structures resembling ‘salt-

fingers’ (Wilson & Mayle 1988, Dalhed et al. 1999). As energy diffuses into the outer portion

of the bubbles, the material rises, exposing the inner material. These slender structures

have more surface area per unit volume than the bubble model used here, allowing energy

to diffuse more rapidly into the low-µ material, and this results in higher rise velocities than

our estimate here.

5. The µ-Boosted Mixing Model

In 1D codes, mixing always requires some physical model to approximate the process.

Our 1D code treats convection as a diffusion process and solves a second-order equation for

each isotope:
(

∂X

∂t

)

k

=
∂

∂m
σ

∂X

∂m
+ R +

∂X

∂m

(

∂m

∂t

)

k

. (19)

The first term in the equation for the rate of change of the isotope is for the convective

diffusion, the next term (R) incorporates the nuclear reaction rates, and there is a final term

to deal with the mesh motion, because the mesh is non-Lagrangian.

In a standard convective region the diffusion coefficient σ that we use takes a form

that scales quadratically with the temperature-gradient excess over the adiabatic value, and

inversely with the nuclear timescale:

σ =
Fconv

tnuclear

(

r
∂m

∂r

)2

[max(0,∇r −∇a)]
2 , (20)

where ∇r and ∇a are the usual radiative and adiabatic temperature gradients from the

mixing-length theory of convection. The dimensionless and largely arbitrary factor Fconv

is simply chosen to be a large number such that the composition in a convective region

homogenizes in a time much shorter than the nuclear time scale (tnuclear). To model our

µ-boosted process we have created a diffusion coefficient wherever there is an inversion. The

form that we have used is:

σ =
Finv

tnuclear

(

r
∂m

∂r

)2

(µ − µmin) (k > kmin)

= 0 (k ≤ kmin) , (21)
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where (a) µmin is the smallest value of µ in the current model, (b) µmin occurs at meshpoint

number kmin, and (c) k, the meshpoint number, is counted outwards from the center. Again,

the factor Finv, if large, simply assures homogeneity in a time much shorter than the nuclear

time scale. To estimate the speed that corresponds to a chosen factor value, we performed a

numerical test in which a step function was installed in an element that was not being used

in the nucleosynthesis network. The position of the step was located just above the point

where the inversion would form. Below this point, the mass fraction was set to 10−7, and

above this point dropped to 10−10. Once the inversion develops, mixing begins, and a stable

gradient is formed. The rate at which the material below the step is transported to the

surface was then monitored to obtain an effective speed (with the usual convective diffusion

coefficient turned off to avoid confusion). This is illustrated in Fig. 5.

Figure 5 – The mass fraction profile created by the proposed diffusion coefficient in a 1M�

star (Z = 0.02), starting from a pure step-function profile. Each curve is separated by 10,000

years. For the value of Finv selected here, the speed at which the material is carried outward

corresponds to about 0.3 cm/s.

Various values of Finv were tested in a 1M� Pop I model, and a value selected to be

the standard. For this value, the speed with which the composition rise moved outward

in the star averaged about 0.3 cm/s. Increasing Finv by 10 times results in a speed that

approached 1.5 cm/s. Increasing this arbitrary value by another factor of 10 (100 times the

standard value) again increases the speed to 6 cm/s. All of these speeds are much less that

expected from the previous work (Papers II, III). Nevertheless they are sufficient to mix the

stable region with the outer convective region on a time that is short in comparison to the

evolution. These speeds are near the startup velocity found where the reduced |δµ|/µ is
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established, where the nucleosynthesis is done, and where the composition changes are most

sensitive to mixing speed. The effective transport speeds are a bit less than expected for a

steady salt-finger like growth through the bulk of the stable region.

Figure 6 – The 12C/13C ratio versus core mass in a 1M� model.

Figure 7 – Approximately 3 million years after the hydrogen burning shell approaches the

homogeneous region, the 1/µ profiles for a 1M� model with no mixing (red) and a µ-boosted

mixing model (blue).

To illustrate the effect on a star’s evolution of this µ-boosted mixing, a 1M� (Z =
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0.02) model was evolved from a pre-main-sequence configuration to the helium core flash.

The initial 12C/13C ratio was chosen to be 90, and as the model reached the giant branch

(Mcore
∼ 0.2M�) the surface convection reduced the ratio to 29.5. When the new mixing

mechanism began, the 12C/13C ratio declined rapidly to near 15 (Fig. 6). At this point, the

reduced 3He abundance slowed the mixing to the extent that between a core mass of 0.3 and

0.45M� the ratio declined only to 14.3. Nearly 93% of the 3He present when the mechanism

started was destroyed.

When the µ-boosted mixing is active, the striking molecular weight inversion (red in

Fig. 7) does not develop. Instead, a much more gradual profile is developed with a modest

cusp in the region where the 3He burning occurs.

6. Sensitivity of the 12C/13C ratio and 3He destruction to Finv

To test the sensitivity of the 3He destruction and the final 12C/13C ratio to the factor

Finv, a series of runs were made on a 1M� Z = 0.02 model. The value of Finv was varied

over a factor of 10,000 (from 0.01 of the standard value to 100 times the standard value).

To test the sensitivity to mesh resolution, this test was done for a model with 300 zones and

another with 750 zones.

Table 1 – Effects of varying Finv and Number of Zones

300 Zones 750 Zones
Factor 12C/13C 3He Destroyed 12C/13C 3He Destroyed
0.01 18.9 59.0% 27.8 35.8%
0.03 14.0 75.8% 22.9 46.7%
0.10 12.2 87.3% 16.1 64.9%
0.30 12.3 91.3% 12.2 80.6%
1.00 13.4 92.6% 11.1 89.1%
3.00 15.7 92.4% 11.7 91.9%
10.0 16.1 92.8% 12.7 93.1%
100 16.5 93.9% 14.1 93.8%

Table 1 shows that factors 1/100th to 1/10th of the adopted standard value (repre-

sentative of cloud rise rates less than 0.1 cm/s) are too slow and the 3He burning is very

incomplete. For rates near the standard value chosen, destruction is near 90%, and 12C/13C

ratios are a minimum. Larger diffusion coefficients only modestly reduce the 3He abundance

and give a little less reduction in 12C/13C. The table also shows a modest sensitivity to mesh

resolution. In the absence of µ-boosted mixing, these models gave 12C/13C ratios of 29.5 and
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29.1.

Next we examined a range of masses (for Z = 0.02, and 300 zones) comparing diffusion

coefficients that differ by a factor of 100. For the higher diffusion coefficients, differing by a

factor of 100, the 3He destruction is almost identical except for the higher mass where less
3He is produced in the first place. There are modest differences in 12C/13C ratios that at

present should be considered as uncertainty in the modeling of the mechanism.

Table 2 – Effect of varying mass and Finv

1× 1× 100× 100×

Mass PreMix Mixed 3He Destroyed Mixed 3He Destroyed

0.80 36.9 15.9 96.4% 19.5 96.7%

0.85 34.0 15.3 95.7% 18.5 96.0%

0.90 32.2 14.5 94.8% 17.6 95.4%

1.00 29.5 13.4 92.6% 16.5 93.5%

1.25 25.6 13.0 85.7% 14.9 89.1%

1.50 23.6 13.7 74.9% 14.4 82.3%

2.00 22.3 17.0 45.1% 14.9 63.6%

Table 2 shows that the behavior seen in the 1M� model holds over the range of inter-

esting masses. Between 0.8 and 2.0M�, higher diffusion coefficients result in small changes

in the 3He destruction, and very modest differences in 12C/13C ratios. The differences in
12C/13C ratios caused by varying mesh and mixing coefficient (±2 for Pop I models) should

be considered uncertainty in the modeling of the mechanism (at present). When the ratio

drops to near the equilibrium value of 3.5, as we will see in Pop II models, these factors have

much less effect on the 12C/13C ratios.

7. 12C/13C and µ-Boosted Mixing

The following section examines the 12C/13C ratios, and the helium production a range of

low mass stars with Pop I and Pop II metallicities. We use the standard diffusion coefficient

developed above for the µ-boosted mixing. Consistent with Anders & Grevesse (1989), the

initial 3He mass fraction was taken to be 2 × 10−5. While it is appropriate to use a higher

value to account for the conversion of D to 3He on the pre-main sequence, this difference is

minor when compared to the main sequence production of low mass stars.

Table 3 shows the 12C/13C ratios for models ranging from 0.8 to 2.0M�, and for metal-

licities from solar to 1/50th solar. In the absence of an additional mixing process, the final
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(tip of Giant Branch) value of the carbon isotope ratio depends on mass. As the mass rises

from 0.8 to 2.0M�, the expected 12C/13C ratio drops from near 35 to near 20, with very little

dependence on Z. This mass dependence is seen in the PreMix columns of table 3, showing

the 12C/13C values before µ-boost mixing begins. Once the mixing begins, the 12C/13C ratio

rapidly drops to a lower value, and the final range of ratios (Mixed) show a considerably

reduced range. For solar metallicities, stars in this mass range all show 12C/13C ≈ 14.5 ±

1.5. Similarly, for Z = 1/50th solar, 12C/13C ≈ 4.0 ± 0.5. The 2.0M� models are not

included in these averages, as the µ-boosted mixing begins just prior to helium core flash in

the Pop I model, and has not begun in the Z = 0.0004 model.

Table 3 – 12C/13C ratios

X=0.70, Z=0.02 X=0.738, Z=0.001 X=0.74, Z=0.0004
Mass PreMix Mixed PreMix Mixed PreMix Mixed
0.80 36.9 15.9 34.1 5.3 35.0 4.2
0.85 34.0 15.3 31.5 5.0 31.8 4.0
0.90 32.2 14.5 29.6 4.9 30.0 4.0
1.00 29.5 13.4 27.3 4.9 27.4 4.0
1.25 25.6 13.0 24.3 5.0 24.3 4.1
1.50 23.6 13.7 24.3 5.2 22.7 4.6
2.00 22.3 17.0 21.2 14.2 21.0 21.0

The result that post-mixing 12C/13C values converge for a broad range of masses is an

interesting result, and is shown graphically in Fig. 8. Before µ-boosted mixing begins, the

carbon isotope ratios show the usual mass dependent range, but not afterwards. To illustrate

Z dependence in more detail, a star of mass 0.9M� was evolved with various values of Z

between solar and 1/200th solar (Fig. 9). The 12C/13C ratio is seen to vary smoothly from

14.8 to 3.5. Additionally there are big change in 14N/15N, and small changes in O isotope

ratios (mostly due to 18O and 17O). Table 4 provides the same information in tabular form.



– 17 –

Figure 8 – 12C/13C ratio for various masses using the standard Finv. The black line shows

where µ-boosted mixing begins.

Figure 9 – Post-mixing, surface isotope ratios in a 0.9M� model with a large range of initial

abundances.
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Table 4 – Surface Isotope Ratios at top of the Giant Branch

Z 3He/4He 12C/13C 14N/15N 16O/17O 16O/18O
0.02 1.8×103 14.5 0.8×104 2.5×103 513.
0.01 2.3×103 11.3 1.4×104 2.4×103 521.
0.004 3.2×103 8.0 1.8×104 2.3×103 537.
0.001 5.2×103 4.9 2.1×104 1.9×103 584.
0.0004 6.8×103 4.0 2.2×104 1.7×103 640.
0.0001 9.1×103 3.5 2.3×104 1.5×103 752.

In the low-mass stars of interest here, the PP chain dominates evolution on the main

sequence, but the hydrogen-burning shell on the giant branch operates on the CNO cycle.

With fewer CNO nuclei, the shell must burn at a somewhat higher temperature for the same

energy production rate. Additionally, the penetration of the surface convection region is not

as deep at low Z, and the inversion is not initiated until the core grows to a larger mass.

These effects combine to result in a higher temperature in the place where the molecular

weight inversion develops. As Z decreases from 0.02 to 0.0001, the core mass at which the

inversion occurs increases (from 0.233 to 0.358 for models of mass 0.9M�). The luminosity,

log L, at the start of mixing increases from 1.4 to 2.4, and the temperature at the base of

the mixing increases from 16.5 million K to 24.0 million. As a result, the mixing begins at

a metallicity-dependent temperature, and the 12C/13C ratio achieves different enhancement

before the reduced 3He abundance slows the process (Fig. 10).

Figure 10 – The 12C/13C ratio verses core mass for a range of metallicities.
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As a final note, these models were all run with a mixing length that was 1.8 pressure

scale heights (to fit the solar radius). Changing the mixing length ± 0.2 resulted in changes

in the 12C/13C ratio that were < 0.4.

8. The Metallicity Effect and Observations

Gilroy & Brown (1991) measured the carbon isotope ratios in the stars of M67 (near

1.2M�). They report that ‘the subgiants seem to have undergone little or no mixing’, and

that the lower giant branch stars exhibit ‘normal first dredge-up mixing ratios’. However

they find 8 upper giant branch and clump giants with 12C/13C ratios between 11 and 15.

This is in excellent agreement with the value near 13.5 that results from µ-boosted mixing

(Table 3). At the lower metal enrichments, Pavlenko et al. (2003) observed giants in the

globular clusters M3, M5, and M13 ([M/H] = −1.3,−1.4, and −1.6 or Z ≤ 0.001), finding
12C/13C between 3 and 5. Again this is in excellent accord with our models (Table 3). They

also observed M71 ([M/H] = −0.71 or Z ≈ 0.004) finding less processing. Here the 12C/13C

ratios show values near 7 (5 to 9). The 0.9M� model that we used to illustrate the metallicity

effect gives an expectation for 12C/13C ratios near 8.

9. 3He and µ-Boosted Mixing

As stated earlier, in the calculations done here the initial mass fraction of 3He was taken

to be 2×10−5. In Table 5, a 0.9M� model is evaluated for a range of metallicities to find the

peak enhancement in the mass of 3He, M(3He,peak)/M(3He,init). For solar composition, the

enhancement reaches a factor of 61. With shorter main sequence lifetimes, Pop II models

of this mass reach only about 38. Increasing the main sequence value of 3He by an order

of magnitude, to 2 × 10−4, by assuming all of the deuterium is burned to 3He on the pre-

main sequence makes surprisingly little difference. For Pop I abundances, starting with

an enhanced initial 3He abundance associated with converting 2H to 3He results in a peak

enhancement of 64 times the ISM 3He used to form the star (2 × 10−5) instead of 61. For

an extreme Pop II metallicity, the peak enhancement is 41 instead of 38.

Table 5 – 3He production in a 0.9M� model.

Z 0.02 0.01 0.004 0.001 0.0004 0.0001
Peak 61.1 56.5 48.7 40.0 38.7 38.1
Final 3.1 2.3 1.6 1.0 0.7 0.5
Change 94.8% 95.8% 96.7% 97.6% 98.1% 98.6%
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These very large peak enhancements were problematic in reconciling stellar nucleosyn-

thesis and Big Bang nucleosynthesis with observed abundances. With µ-boosted mixing

the final enhancement for Pop I abundances is reduced to 3.1 (3.4 when 2H conversion is

included), and for Pop II models the final value is 0.52 (0.53 with 2H conversion).

Table 6 shows the same behavior for stars in the mass range of 0.8 to 2M�. Table 6

shows the ratio of the peak Pre-mix mass of 3He to the original mass of 3He in the star, as

well as the post-mixing ratio

Table 6 – 3He/3He (original)

X=0.70 Z=0.02 X=0.738 Z=0.001 X=0.74 Z=0.0004
M Peak Mixed Peak Mixed Peak Mixed
0.80 76.6 2.7 54.7 0.86 53.0 0.62
0.85 68.2 2.9 46.5 0.90 45.1 0.66
0.90 61.1 3.1 40.0 0.95 38.7 0.73
1.00 49.7 3.7 32.9 1.12 30.0 0.83
1.25 31.7 4.5 21.8 1.60 19.9 1.21
1.50 21.8 5.5 15.7 2.08 14.4 1.91
2.00 12.8 7.0 9.5 6.70 8.7 8.39

As found in earlier papers, the greatest potential 3He enhancement occurs for stars of

1M� and below. In these models, it is the large 3He enhancement that enables the µ-boosted

mixing to destroy 90 to 95% of the potential 3He contribution to the interstellar medium.

As a final note, below 2M�, the µ-boosted mixing operates to (near) completion only for

the Pop I model. In the Z = 0.001 calculation, the mechanism begins just prior to the

helium flash and is incomplete. In the Z = 0.0004 model, the helium core flash precedes any

significant µ-boosted mixing.

10. 16O and 23Na with µ-Boosted Mixing

Some observational evidence has suggested that 16O and 23Na may change on the upper

giant branch. In the 1.5M� models run with Z = 0.02 and 0.0001, there was substantial
23Na enhancement: δ(23Na) ≈ 19% and 68%. However, this was just the usual enhancement

expected from main sequence processing followed by giant branch mixing, and is not sig-

nificantly effected by µ-boosted mixing. When we examined the 0.9M� model the greatest

change was seen for the extreme Pop II abundance (1/200th solar), where the 23Na abun-

dance climbs by 3%. Only about half of this change is due to µ-boosted mixing. The 16O

depletion is a trivial 0.25% (Fig. 11).
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In low mass, low metallicity stars, the µ-boosted mixing brings the effective bottom of

the convection zone to a point where 16O and 23Na are beginning to change. Because of

this the change in these isotopes is dependant on the location that the mixing model finds

for the base of the µ-boosted mixing, where the mixing and burning of 3He are in balance.

The mixing model developed here does not appear sufficient to explain an observable 16O

depletion or 23Na enhancement, but this result warrants additional investigation. Because

of the temperature sensitivity, a modest amount of undershoot, or turbulent mixing, could

change this result.

Figure 11 – Change in the surface abundance of 16O and 23Na in a 0.9M� model evolved

with various metallicities.

11. Mass Loss after the mixing does not matter

As noted in the introduction, the blue horizontal branches of globular clusters indicate

that a substantial fraction of the envelope is lost prior to the helium core flash. This was

the origin of the excess 3He production by these stars. With this new mixing mechanism,

once the inversion occurs, the 3He abundance drops rapidly. As the mixing depends on the

square of the 3He abundance, the process slows dramatically when 90% of this isotope has

been consumed. Mass loss after this rapid drop does not cause contamination problems

with excess 3He, and leads to little change in the surface abundances or yields. To illustrate

this, a 0.8M� Z = 0.0001 model was run with no mass loss, and then again with 0.2M� of

mass loss near the tip off the giant branch (and after the µ-boosted mixing). The surface

abundances show little change from the mass loss.

In the absence of µ-boosted mixing, the mass losing model ejects 52 times as much 3He

into the ISM as it took when it formed. This was the basis of the problem of reconciling Big
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Bang nucleosynthesis with yields from stellar evolution. With µ-boosted mixing, the mass

loss ejects 1/3rd of the 3He into the ISM as it took when the star formed, and retains only

1/7th of the intake to be further processed or ejected.

Table 7 – Enhancements with and without Mass Loss

Isotope Ratios No Loss Loss
3He/4He 9065.5 9466.7
12C/13C 3.5 3.5
14N/15N 22564.1 22330.
16O/17O 1913.4 1920.8
16O/18O 702.6 677.8
δ(16O) -0.01% -0.01%
δ(23Na) 1.2% 1.3%

12. Conclusions

Our first conclusion is that µ-boosted mixing is a significant and inevitable process in

low-mass stars ascending the giant branch for the first time. Once it begins, the timescale is

short, and it maintains a homogeneous composition down to base temperatures in the region

of 16 to 25 million K, allowing nuclear processing. The result is an observable change in the

expected abundances of 3He and the CNO isotopes.

This mixing mechanism is driven by the destruction of 3He, and is self-limiting. The

lowest mass stars ( < 1.25M�), that were expected to produce a problematic excess of 3He,

quickly destroy 90 to 95% of that isotope. As a result, the 3He returned to the ISM is within

the limits posed by Hata et al (1995). This mixing also modifies the 12C/13C ratios. Instead

of showing a significant mass dependence in that ratio, we find a metallicity dependence

instead. Shortly after this mixing begins, Pop I stars between 0.8 and 2.0M� should all

drop to a value near 14.5. Extreme pop II stars in this mass range should show ratios near

4. Likewise the nitrogen and oxygen isotope ratios are substantially affected (Figure 12).
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Figure 12: CNO isotope ratios in a 1M� (Z = 0.0001) model are plotted against core mass.

As a first effort to develop a 1D model for this mixing process, we have tried to validate

it with reference to the original 3D modeling, and basic physical arguments. At the moment,

variations due to mesh resolution and mixing speed suggest an uncertainty of ±2 for Pop I

values of the 12C/13C ratio (much less for Pop II). The fractional destruction of 3He seems

less sensitive to such choices. We have also held the initial isotope ratios fixed (12C/13C =

90, 14N/15N = 270, 16O/17O = 2625, and 16O/18O = 490), and different values must be run

to study chemical evolution.

Finally, this process does not appear to have significant impact on the 16O depletion

or 23Na enhancement, but with the temperature sensitivity of these rates, it comes close.

Any overshoot in the mixing at the bottom of the region will be important. Also, the

thickness of the stable region that surrounds the hydrogen burning shell is reduced from

over a solar radius to a few hundredths of a solar radius. This may enable other mechanisms

(rotation, magnetic fields, ...) to create variation in the observed abundances. Alternatively,

the homogeneity seen in clusters like M67 (Gilroy & Brown 1991) might be used to limit

models for rotational mixing.
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