51 research outputs found

    Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments

    Get PDF
    Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections

    Thoracic myelopathy caused by ossification of ligamentum flavum of which fluorosis as an etiology factor

    Get PDF
    PURPOSE: To evaluate the clinical feature, operative method and prognosis of thoracic ossification of ligamentum flavum caused by skeletal fluorosis. METHODS: All the patients with thoracic OLF, who underwent surgical management in the authors' hospital from 1993–2003, were retrospectively studied. The diagnosis of skeletal fluorosis was made by the epidemic history, clinical symptoms, radiographic findings, and urinalysis. En bloc laminectomy decompression of the involved thoracic levels was performed in all cases. Cervical open door decompression or lumbar laminectomy decompression was performed if relevant stenosis existed. The neurological statuses were evaluated with the Japanese Orthopaedic Association (JOA) scoring system preoperatively and at the end point of follow up. Also, the recovery rate was calculated. RESULTS: 23 cases have been enrolled in this study. Imaging study findings showed all the cases have ossification of ligamentum flavum together with ossification of many other ligaments and interosseous membranes, i.e. interosseous membranes of the forearm in 18 of 23 (78.3%), of the leg in 14 of 23 (60.1%) and of the ribs in 11 of 23 (47.8%). Urinalysis showed markedly increased urinary fluoride in 14 of 23 patients (60.9%). All the patients were followed up from 12 months to 9 years and 3 months, with an average of 4 years and 5 months. The JOA score increased significantly at the end of follow up (P = 0.0001). The recovery rate was 51.83 ± 32.36%. Multiple regression analysis revealed that the preoperative JOA score was an important predictor of surgical outcome (p = 0.0022, r = 0.60628). ANOVA analysis showed that patients with acute onset or too long duration had worse surgical result (P = 0.0003). CONCLUSION: Fluorosis can cause ossification of thoracic ligamentum flavum, as well as other ligaments. En bloc laminectomy decompression was an effective method. Preoperative JOA score was the most important predictor of surgical outcome. Patients with acute onset or too long duration had worse surgical outcome

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 ”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 ”m) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    Evidence for Altered Metabolism of Sphingosine-1-Phosphate in the Corpus Callosum of Patients with Schizophrenia

    Get PDF
    The disturbed integrity of myelin and white matter, along with dysregulation of the lipid metabolism, may be involved in schizophrenia pathophysiology. Considering the crucial role of sphingolipids in neurodevelopment, particularly in oligodendrocyte differentiation and myelination, we examined the role of sphingolipid dynamics in the pathophysiology of schizophrenia. We performed targeted mass spectrometry-based analysis of sphingolipids from the cortical area and corpus callosum of postmortem brain samples from patients with schizophrenia and controls. We observed lower sphingosine-1-phosphate (S1P) levels, specifically in the corpus callosum of patients with schizophrenia, but not in major depressive disorder or bipolar disorder, when compared with the controls. Patient data and animal studies showed that antipsychotic intake did not contribute to the lowered S1P levels. We also found that lowered S1P levels in the corpus callosum of patients with schizophrenia may stem from the upregulation of genes for S1P-degrading enzymes; higher expression of genes for S1P receptors suggested a potential compensatory mechanism for the lowered S1P levels. A higher ratio of the sum of sphingosine and ceramide to S1P, which can induce apoptosis and cell-cycle arrest, was also observed in the samples of patients with schizophrenia than in controls. These results suggest that an altered S1P metabolism may underlie the deficits in oligodendrocyte differentiation and myelin formation, leading to the structural and molecular abnormalities of white matter reported in schizophrenia. Our findings may pave the way toward a novel therapeutic strategy
    • 

    corecore