147 research outputs found

    Group-galaxy correlations in redshift space as a probe of the growth of structure

    Get PDF
    We investigate the use of the cross-correlation between galaxies and galaxy groups to measure redshift-space distortions (RSD) and thus probe the growth rate of cosmological structure. This is compared to the classical approach based on using galaxy auto-correlation. We make use of realistic simulated galaxy catalogues that have been constructed by populating simulated dark matter haloes with galaxies through halo occupation prescriptions. We adapt the classical RSD dispersion model to the case of the group-galaxy cross-correlation function and estimate the RSD parameter β\beta by fitting both the full anisotropic correlation function ξ(rp,π)\xi(r_p,\pi) and its multipole moments. In addition, we define a modified version of the latter statistics by truncating the multipole moments to exclude strongly non-linear distortions at small transverse scales. We fit these three observable quantities in our set of simulated galaxy catalogues and estimate statistical and systematic errors on β\beta for the case of galaxy-galaxy, group-group, and group-galaxy correlation functions. When ignoring off-diagonal elements of the covariance matrix in the fitting, the truncated multipole moments of the group-galaxy cross-correlation function provide the most accurate estimate, with systematic errors below 3% when fitting transverse scales larger than 10Mpc/h10Mpc/h. Including the full data covariance enlarges statistical errors but keep unchanged the level of systematic error. Although statistical errors are generally larger for groups, the use of group-galaxy cross-correlation can potentially allow the reduction of systematics while using simple linear or dispersion models.Comment: 18 pages, 16 figure

    Evidence of surface charge effects in T-branch nanojunctions using microsecond-pulse testing

    Get PDF
    The understanding of the influence of surface charge effects on the electrical properties of nanostructures is a key aspect for the forthcoming generations of electronic devices. In this work, by using an ultrafast electrical pulse characterization technique, we report on the room-temperature time response of a T-branch nanojunction which allows identifying the signature of surface states. Different pulse widths from 500 ns to 100 µs were applied to the device. For a given pulse width, the stem voltage is measured and compared with the DC result. The output value in the stem is found to depend on the pulse width and to be related to the characteristic charging time of the interface states. As expected, the results show that the well-know nonlinear response of T-branch junctions is more pronounced for long pulses, beyond such a characteristic time.ROOTHz (FP7-243845

    Probing deviations from General Relativity with the Euclid spectroscopic survey

    Full text link
    We discuss the ability of the planned Euclid mission to detect deviations from General Relativity using its extensive redshift survey of more than 50 Million galaxies. Constraints on the gravity theory are placed measuring the growth rate of structure within 14 redshift bins between z=0.7 and z=2. The growth rate is measured from redshift-space distortions, i.e. the anisotropy of the clustering pattern induced by coherent peculiar motions. This is performed in the overall context of the Euclid spectroscopic survey, which will simultaneously measure the expansion history of the universe, using the power spectrum and its baryonic features as a standard ruler, accounting for the relative degeneracies of expansion and growth parameters. The resulting expected errors on the growth rate in the different redshift bins, expressed through the quantity f\sigma_8, range between 1.3% and 4.4%. We discuss the optimisation of the survey configuration and investigate the important dependence on the growth parameterisation and the assumed cosmological model. We show how a specific parameterisation could actually drive the design towards artificially restricted regions of the parameter space. Finally, in the framework of the popular "\gamma -parameterisation", we show that the Euclid spectroscopic survey alone will already be able to provide substantial evidence (in Bayesian terms) if the growth index differs from the GR value \gamma=0.55 by at least \sim 0.13. This will combine with the comparable inference power provided by the Euclid weak lensing survey, resulting in Euclid's unique ability to provide a decisive test of modified gravity.Comment: 18 pages, 15 figures, accepted by MNRA

    Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds

    Get PDF
    During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4. Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories

    Get PDF
    SPHEREx is a proposed NASA MIDEX mission selected for Phase A study. SPHEREx would carry out the first all-sky spectral survey in the near infrared. At the end of its two-year mission, SPHEREx would obtain 0.75-to-5μm spectra of every 6.2 arcsec pixel on the sky, with spectral resolution R>35 and a 5-σ sensitivity AB>19 per spectral/spatial resolution element. More details concerning SPHEREx are available at http://spherex.caltech.edu. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. Though these three themes are undoubtedly compelling, they are far from exhausting the scientific output of SPHEREx. Indeed, SPHEREx would create a unique all-sky spectral database including spectra of very large numbers of astronomical and solar system targets, including both extended and diffuse sources. These spectra would enable a wide variety of investigations, and the SPHEREx team is dedicated to making the data available to the community to enable these investigations, which we refer to as Legacy Science. To that end, we have sponsored two workshops for the general scientific community to identify the most interesting Legacy Science themes and to ensure that the SPHEREx data products are responsive to their needs. In February of 2016, some 50 scientists from all fields met in Pasadena to develop these themes and to understand their implications for the SPHEREx mission. The 2016 workshop highlighted many synergies between SPHEREx and other contemporaneous astronomical missions, facilities, and databases. Consequently, in January 2018 we convened a second workshop at the Center for Astrophysics in Cambridge to focus specifically on these synergies. This white paper reports on the results of the 2018 SPHEREx workshop

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories

    Get PDF
    SPHEREx is a proposed NASA MIDEX mission selected for Phase A study. SPHEREx would carry out the first all-sky spectral survey in the near infrared. At the end of its two-year mission, SPHEREx would obtain 0.75-to-5μm spectra of every 6.2 arcsec pixel on the sky, with spectral resolution R>35 and a 5-σ sensitivity AB>19 per spectral/spatial resolution element. More details concerning SPHEREx are available at http://spherex.caltech.edu. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. Though these three themes are undoubtedly compelling, they are far from exhausting the scientific output of SPHEREx. Indeed, SPHEREx would create a unique all-sky spectral database including spectra of very large numbers of astronomical and solar system targets, including both extended and diffuse sources. These spectra would enable a wide variety of investigations, and the SPHEREx team is dedicated to making the data available to the community to enable these investigations, which we refer to as Legacy Science. To that end, we have sponsored two workshops for the general scientific community to identify the most interesting Legacy Science themes and to ensure that the SPHEREx data products are responsive to their needs. In February of 2016, some 50 scientists from all fields met in Pasadena to develop these themes and to understand their implications for the SPHEREx mission. The 2016 workshop highlighted many synergies between SPHEREx and other contemporaneous astronomical missions, facilities, and databases. Consequently, in January 2018 we convened a second workshop at the Center for Astrophysics in Cambridge to focus specifically on these synergies. This white paper reports on the results of the 2018 SPHEREx workshop

    Modelling non-linear redshift-space distortions in the galaxy clustering pattern: systematic errors on the growth rate parameter

    Full text link
    We investigate the ability of state-of-the-art redshift-space distortions models for the galaxy anisotropic two-point correlation function \xi(r_p, \pi), to recover precise and unbiased estimates of the linear growth rate of structure f, when applied to catalogues of galaxies characterised by a realistic bias relation. To this aim, we make use of a set of simulated catalogues at z = 0.1 and z = 1 with different luminosity thresholds, obtained by populating dark-matter haloes from a large N-body simulation using halo occupation prescriptions. We examine the most recent developments in redshift-space distortions modelling, which account for non-linearities on both small and intermediate scales produced respectively by randomised motions in virialised structures and non-linear coupling between the density and velocity fields. We consider the possibility of including the linear component of galaxy bias as a free parameter and directly estimate the growth rate of structure f. Results are compared to those obtained using the standard dispersion model, over different ranges of scales.We find that the model of Taruya et al. (2010), the most sophisticated one considered in this analysis, provides in general the most unbiased estimates of the growth rate of structure, with systematic errors within 4% over a wide range of galaxy populations spanning luminosities between L > L* and L > 3L*. The scale-dependence of galaxy bias plays a role on recovering unbiased estimates of f when fitting quasi non-linear scales. Its effect is particularly severe for most luminous galaxies, for which systematic effects in the modelling might be more difficult to mitigate and have to be further investigated. [...]Comment: 17 pages, 16 figures, Accepted for publication in MNRA
    corecore