868 research outputs found

    The Noncommutative Harmonic Oscillator based in Simplectic Representation of Galilei Group

    Full text link
    In this work we study symplectic unitary representations for the Galilei group. As a consequence the Schr\"odinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physical consistent theory in phase space is constructed. The state is described by a quasi-probability amplitude that is in association with the Wigner function. The 3D harmonic oscillator and the noncommutative oscillator are studied in phase space as an application, and the Wigner function associated to both cases are determined.Comment: 7 pages,no figure

    Optical and physicochemical characterizations of a cellulosic/CdSe-QDs@S-DAB5 film

    Full text link
    CdSe quantum dots nanoparticles were coated with the thiolated (DiAminoButane based dendrimer) DAB dendrimer of fifth generation (S-DAB(5)) and embedded in a highly hydrophilic regenerated cellulose (RC) film by simple dip-coating method (immersion in QD-dendrimer aqueous solution) as a way to get a flexible nano-engineered film (RC-4/CdSe-QDs@S-DAB(5)) with high transparency and photoluminescence properties for different applications. Optical changes in the RC film associated with QDs inclusion were determined by spectroscopic ellipsometry (SE) measurements, which provide information on changes caused in the refraction index and the extinction coefficients of the film, as well as by light transmittance/reflectance curves and photoluminescence (PL) spectra. Impedance spectroscopy (IS) and other typical physicochemical techniques for material characterization (TEM, SEM and XPS) have also been used in order to have more complete information on film characteristics. A comparison of RC-4/CdSe-QDs@S-DAB(5) film optical characteristics with those exhibited by other RC-modified films depending on the type of dendrimer was also carried out

    Psychological Capital of Spanish Workers: Confirmatory Factor Analysis of PCQ-12

    Get PDF
    Background: The concept of positive psychological capital draws from the study of positive organizational behavior and refers to a psychological state characterized by self-efficacy, hope, resilience, and optimism that can be developed and related to job performance. Methods: This paper analyzed the reliability and factorial structure of the Psychological Capital Questionnaire-12 (PCQ-12) in a sample composed by Spanish workers (N = 339), from different professional sectors, through a confirmatory factor analysis (CFA). Results: The analysis assessed a model with four-correlated factors competing with a second-order model proposed by the authors of this instrument. The results of the adjustment and reliability values of the dimensions are discussed in light of various studies which differ from our model or support it along with its limitations and contributes. Conclusion: Our results indicate the need to contemplate this instrument's sensitivity towards cultural differences, both geographical and organizational

    A review of estimation of distribution algorithms in bioinformatics

    Get PDF
    Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain

    Use of a Western blot technique for the serodiagnosis of glanders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The in vivo diagnosis of glanders relies on the highly sensitive complement fixation test (CFT). Frequently observed false positive results are troublesome for veterinary authorities and cause financial losses to animal owners. Consequently, there is an urgent need to develop a test with high specificity. Hence, a Western blot assay making use of a partly purified lipopolysaccaride (LPS) containing antigen of three <it>Burkholderia mallei </it>strains was developed. The test was validated investigating a comprehensive set of positive and negative sera obtained from horses and mules from endemic and non endemic areas.</p> <p>Results</p> <p>The developed Western blot assay showed a markedly higher diagnostic specificity when compared to the prescribed CFT and therefore can be used as a confirmatory test. However, the CFT remains the test of choice for routine testing of glanders due to its high sensitivity, its feasibility using standard laboratory equipment and its worldwide distribution in diagnostic laboratories.</p> <p>Conclusions</p> <p>The CFT should be amended by the newly validated Western blot to increase the positive likelihood ratio of glanders serodiagnosis in non endemic areas or areas with low glanders prevalence. Its use for international trade of horses and mules should be implemented by the OIE.</p

    Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting

    Get PDF
    Background: Periodically, humanity is often faced with new and emerging viruses that can be a significant global threat. It has already been over a century post—the Spanish Flu pandemic, and we are witnessing a new type of coronavirus, the SARS-CoV-2, which is responsible for Covid-19. It emerged from the city of Wuhan (China) in December 2019, and within a few months, the virus propagated itself globally now resulting more than 50 million cases with over 1 million deaths. The high infection rates coupled with dynamic population movement demands for tools, especially within a Brazilian context, that will support health managers to develop policies for controlling and combating the new virus. / Methods: In this work, we propose a tool for real-time spatio-temporal analysis using a machine learning approach. The COVID-SGIS system brings together routinely collected health data on Covid-19 distributed across public health systems in Brazil, as well as taking to under consideration the geographic and time-dependent features of Covid-19 so as to make spatio-temporal predictions. The data are sub-divided by federative unit and municipality. In our case study, we made spatio-temporal predictions of the distribution of cases and deaths in Brazil and in each federative unit. Four regression methods were investigated: linear regression, support vector machines (polynomial kernels and RBF), multilayer perceptrons, and random forests. We use the percentage RMSE and the correlation coefficient as quality metrics. / Results: For qualitative evaluation, we made spatio-temporal predictions for the period from 25 to 27 May 2020. Considering qualitatively and quantitatively the case of the State of Pernambuco and Brazil as a whole, linear regression presented the best prediction results (thematic maps with good data distribution, correlation coefficient >0.99 and RMSE (%) <4% for Pernambuco and around 5% for Brazil) with low training time: [0.00; 0.04 ms], CI 95%. / Conclusion: Spatio-temporal analysis provided a broader assessment of those in the regions where the accumulated confirmed cases of Covid-19 were concentrated. It was possible to differentiate in the thematic maps the regions with the highest concentration of cases from the regions with low concentration and regions in the transition range. This approach is fundamental to support health managers and epidemiologists to elaborate policies and plans to control the Covid-19 pandemics

    COVID-SGIS: A Smart Tool for Dynamic Monitoring and Temporal Forecasting of Covid-19

    Get PDF
    Background: The global burden of the new coronavirus SARS-CoV-2 is increasing at an unprecedented rate. The current spread of Covid-19 in Brazil is problematic causing a huge public health burden to its population and national health-care service. To evaluate strategies for alleviating such problems, it is necessary to forecast the number of cases and deaths in order to aid the stakeholders in the process of making decisions against the disease. We propose a novel system for real-time forecast of the cumulative cases of Covid-19 in Brazil. / Methods: We developed the novel COVID-SGIS application for the real-time surveillance, forecast and spatial visualization of Covid-19 for Brazil. This system captures routinely reported Covid-19 information from 27 federative units from the Brazil.io database. It utilizes all Covid-19 confirmed case data that have been notified through the National Notification System, from March to May 2020. Time series ARIMA models were integrated for the forecast of cumulative number of Covid-19 cases and deaths. These include 6-days forecasts as graphical outputs for each federative unit in Brazil, separately, with its corresponding 95% CI for statistical significance. In addition, a worst and best scenarios are presented. / Results: The following federative units (out of 27) were flagged by our ARIMA models showing statistically significant increasing temporal patterns of Covid-19 cases during the specified day-to-day period: Bahia, Maranhão, Piauí, Rio Grande do Norte, Amapá, Rondônia, where their day-to-day forecasts were within the 95% CI limits. Equally, the same findings were observed for Espírito Santo, Minas Gerais, Paraná, and Santa Catarina. The overall percentage error between the forecasted values and the actual values varied between 2.56 and 6.50%. For the days when the forecasts fell outside the forecast interval, the percentage errors in relation to the worst case scenario were below 5%. / Conclusion: The proposed method for dynamic forecasting may be used to guide social policies and plan direct interventions in a cost-effective, concise, and robust manner. This novel tools can play an important role for guiding the course of action against the Covid-19 pandemic for Brazil and country neighbors in South America

    Automatic Detection of Malignant Masses in Digital Mammograms Based on a MCET-HHO Approach

    Get PDF
    Digital image processing techniques have become an important process within medical images. These techniques allow the improvement of the images in order to facilitate their interpretation for specialists. Within these are the segmentation methods, which help to divide the images by regions based on different approaches, in order to identify details that may be complex to distinguish initially. In this work, it is proposed the implementation of a multilevel threshold segmentation technique applied to mammography images, based on the Harris Hawks Optimization (HHO) algorithm, in order to identify regions of interest (ROIs) that contain malignant masses. The method of minimum cross entropy thresholding (MCET) is used to select the optimal threshold values for the segmentation. For the development of this work, four mammography images were used (all with presence of a malignant tumor), in their two views, craniocaudal (CC) and mediolateral oblique (MLO), obtained from the Digital Database for Screening Mammography (DDSM). Finally, the ROIs calculated were compared with the original ROIs of the database through a series of metrics, to evaluate the behavior of the algorithm. According to the results obtained, where it is shown that the agreement between the original ROIs and the calculated ROIs is significantly high, it is possible to conclude that the proposal of the MCET-HHO algorithm allows the automatic identification of ROIs containing malignant tumors in mammography images with significant accuracy.Digital image processing techniques have become an important process within medical images. These techniques allow the improvement of the images in order to facilitate their interpretation for specialists. Within these are the segmentation methods, which help to divide the images by regions based on different approaches, in order to identify details that may be complex to distinguish initially. In this work, it is proposed the implementation of a multilevel threshold segmentation technique applied to mammography images, based on the Harris Hawks Optimization (HHO) algorithm, in order to identify regions of interest (ROIs) that contain malignant masses. The method of minimum cross entropy thresholding (MCET) is used to select the optimal threshold values for the segmentation. For the development of this work, four mammography images were used (all with presence of a malignant tumor), in their two views, craniocaudal (CC) and mediolateral oblique (MLO), obtained from the Digital Database for Screening Mammography (DDSM). Finally, the ROIs calculated were compared with the original ROIs of the database through a series of metrics, to evaluate the behavior of the algorithm. According to the results obtained, where it is shown that the agreement between the original ROIs and the calculated ROIs is significantly high, it is possible to conclude that the proposal of the MCET-HHO algorithm allows the automatic identification of ROIs containing malignant tumors in mammography images with significant accuracy

    Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows

    Get PDF
    Background: Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion. Methods: In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window". Results: The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set. Conclusions: Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.FCT under the Neuroclinomics2 project [PTDC/EEI-SII/1937/2014, SFRH/BD/95846/2013]; INESC-ID plurianual [UID/CEC/50021/2013]; LASIGE Research Unit [UID/CEC/00408/2013
    corecore