3,414 research outputs found
Selective stimulatory action of olfactory ensheathing glia-conditioned medium on oligodendroglial differentiation, with additional reference to signaling mechanisms
AbstractWe examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2′3′ cyclic nucleotide 3′phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose–response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demyelination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel methods to deliver these factors and/or potentiating chemicals
Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2
Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo
Human cerebral organoids and fetal brain tissue share proteomic similarities
The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temNão tem14/21035-0; 16/07332-7; 13/08711-3; 14/10068-4JN, VS-C, and DM-D-S are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 13/08711-3, and 14/10068-4. CS was recipient of a CAPES-FAPERJ Postdoc fellowship. Other funds are provided by the National Council for Scientific and Technological Development (CNPq), the Instituto Nacional de Ciência e Tecnologia de Neurociência Translacional (INCT-INNT), Foundation for Research Support in the State of Rio de Janeiro (FAPERJ), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Funding Authority for Studies and Projects (FINEP), and Brazilian Development Bank (BNDES
Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?
Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp),a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases
Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog (Atelocynus microtis)
The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species
Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio
Activation of cannabinoid type 1 receptor (CB1) modulates oligodendroglial process branching complexity in rat hippocampal cultures stimulated by olfactory ensheathing glia-conditioned medium
The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures
Low frequency of TERT promoter mutations in gastrointestinal stromal tumors (GISTs).
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and
c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been
reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in
genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T
mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs.
No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present
study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our
findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.This project was partially supported by Barretos Cancer Hospital internal
research funds (PAIP) and CNPq Universal Grant (476192/2013-7) to RMR.
NCC is a recipient of an FAPESP Doctoral Fellowship (2013/25787-3). Further
funding from the project ‘Microenvironment, metabolism and cancer’ that was
partially supported by Programa Operacional Regional do Norte (ON.2—O
Novo Norte) under the Quadro de Referência Estratégico Nacional (QREN)
and the Fundo Europeu de Desenvolvimento Regional (FEDER). IPATIMUP is
an Associate Laboratory of the Portuguese Ministry of Science, Technology and
Higher Education that is partially supported by the FCT
A survey of fertility preservation options available to cancer patients around the globe
Purpose: Oncofertility focuses on providing fertility and endocrine-sparing options to patients who undergo life-preserving but gonadotoxic cancer treatment. The resources needed to meet patient demand often are fragmented along disciplinary lines. We quantify assets and gaps in oncofertility care on a global scale. Methods: Survey-based questionnaires were provided to 191 members of the Oncofertility Consortium Global Partners Network, a National Institutes of Health–funded organization. Responses were analyzed to measure trends and regional subtleties about patient oncofertility experiences and to analyze barriers to care at sites that provide oncofertility services. Results: Sixty-three responses were received (response rate, 25%), and 40 were analyzed from oncofertility centers in 28 countries. Thirty of 40 survey results (75%) showed that formal referral processes and psychological care are provided to patients at the majority of sites. Fourteen of 23 respondents (61%) stated that some fertility preservation services are not offered because of cultural and legal barriers. The growth of oncofertility and its capacity to improve the lives of cancer survivors around the globe relies on concentrated efforts to increase awareness, promote collaboration, share best practices, and advocate for research funding. Conclusion: This survey reveals global and regional successes and challenges and provides insight into what is needed to advance the field and make the discussion of fertility preservation and endocrine health a standard component of the cancer treatment plan. As the field of oncofertility continues to develop around the globe, regular assessment of both international and regional barriers to quality care must continue to guide process improvements
- …