2,862 research outputs found

    Combined drug triads for synergic neuroprotection in retinal degeneration

    Get PDF
    This review focuses on retina degeneration occurring during glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), and on the potential therapeutic use of triads of repositioned medicines, addressed to distinct but complementary targets, to prevent, delay or stop retina cell death. Although myriad pathogenic mechanisms have been implicated in these disorders, common signaling pathways leading to apoptotic cell death to all of them, and to all neurodegenerative diseases are (i) calcium dyshomeostasis/excitotoxicity; (ii) oxidative stress/mitochondrial dysfunction, and (iii) neuroinflammation/P2X7 receptor activation. From a therapeutic point of view, it is relevant to consider the multitarget approach based on the use of combined medicines acting on complementary pathogenic mechanisms that has been highly successful in the treatment of chronic diseases such as cancer, AIDS, pain, hypertension, Parkinson’s disease, cardiac failure, depression, or the epilepsies as the basic mechanisms of cell death do not differ between the different CNS degenerative diseases. We suggest the multi-target therapy approach could be more effective compared with single-drug treatments. Used at doses lower than standard, these triads may also be safer and more efficient. After the establishment of a proof-of-concept in animal models of retinal degeneration, potential successful preclinical trials of such combinations may eventually drive to test this concept in clinical trials in patients, first to evaluate the safety and efficacy of the drug combinations in humans and then their therapeutic advantages, if any, seeking the prevention and/or the delay of retina degeneration and blindness.We thank the support received from the EU Horizon 2020 Research and Innovation Program under Maria Slodowska‐Curie, Grant/Award Number: Grant Agreement N. 766124; Fundación Teófilo Hernando; Spanish Ministry of Science and Innovation (FEDER-PID2019-106230RB-I00) and Generalitat Valenciana (IDIFEDER/2017/064, PROMETEO/2021/024)

    Mitochondrial Na ϩ /Ca 2ϩ -Exchanger Blocker CGP37157 Protects against Chromaffin Cell Death Elicited by Veratridine

    Get PDF
    ABSTRACT Mitochondrial calcium (Ca 2ϩ ) dyshomeostasis constitutes a critical step in the metabolic crossroads leading to cell death. Therefore, we have studied here whether 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157; CGP), a blocker of the mitochondrial Na . This drastic cytoprotective effect of CGP could be explained in part through its regulatory actions on the mNCX. In general, it is accepted that a dysregulation of the mechanism that fine tunes the transient or more sustained levels of the cytosolic Ca 2ϩ concentrations ([Ca 2ϩ ] c ), leads to excitotoxic neuronal death ABBREVIATIONS: mNCX, mitochondrial Na ϩ /Ca 2ϩ -exchanger; DMSO, dimethyl sulfoxide; FPL64176, FPL, 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester; 30 K ϩ /FPL, 30 mM K ϩ /0.3 M FPL; MTT formazan, 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan, thiazolyl blue formazan; CGP37157, 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one; TTX, tetrodotoxin citrate, octahydro-12-(hydroxymethyl)-2-imino-5,9:7,10a-dimethan o-10aH- [1,3] dioxocino [6,5-d]pyrimidin

    Patients with Invasive Lobular Carcinoma Show a Significant Increase in IRS-4 Expression Compared to Infiltrative Ductal Carcinoma—A Histopathological Study

    Get PDF
    Background and Objectives: Breast cancer (BC) is the first diagnosed type of cancer and the second leading cause of cancer-related mortality in women. In addition, despite the improvement in treatment and survival in these patients, the global prevalence and incidence of this cancer are rising, and its mortality may be different according to the histological subtype. Invasive lobular carcinoma (ILC) is less common but entails a poorer prognosis than infiltrative ductal carcinoma (IDC), exhibiting a different clinical and histopathological profile. Deepening study on the molecular profile of both types of cancer may be of great aid to understand the carcinogenesis and progression of BC. In this sense, the aim of the present study was to explore the histological expression of Insulin receptor substrate 4 (IRS-4), cyclooxygenase 2 (COX-2), Cyclin D1 and retinoblastoma protein 1 (Rb1) in patients with ILC and IDC. Patients and Methods: Thus, breast tissue samples from 45 patients with ILC and from 45 subjects with IDC were analyzed in our study. Results: Interestingly, we observed that IRS-4, COX-2, Rb1 and Cyclin D1 were overexpressed in patients with ILC in comparison to IDC. Conclusions: These results may indicate a differential molecular profile between both types of tumors, which may explain the clinical differences among ILC and IDC. Further studies are warranted in order to shed light onto the molecular and translational implications of these components, also aiding to develop a possible targeted therapy to improve the clinical management of these patients

    An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times

    Get PDF
    first_pagesettingsOrder Article Reprints Open AccessReview An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times by Cielo García-Montero 1ORCID,Oscar Fraile-Martínez 1,Coral Bravo 2,3,4,Diego Torres-Carranza 5,Lara Sanchez-Trujillo 1,6ORCID,Ana M. Gómez-Lahoz 1,Luis G. Guijarro 7,Natalio García-Honduvilla 1,8,Angel Asúnsolo 8,9ORCID,Julia Bujan 1,8ORCID,Jorge Monserrat 1,8ORCID,Encarnación Serrano 10,Melchor Álvarez-Mon 1,8,11,Juan A De León-Luis 3,4,5,*ORCID,Miguel A. Álvarez-Mon 1,8,12ORCID andMiguel A. Ortega 1,8,13ORCID 1 Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain 2 Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain 3 Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain 4 Health Research Institute Gregorio Marañón, 28009 Madrid, Spain 5 First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain 6 Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain 7 Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain 8 Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain 9 Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain 10 Los fresnos of Health Centre, Health Area III, Torrejon de Ardoz, 28850 Madrid, Spain add Show full affiliation list * Author to whom correspondence should be addressed. Vaccines 2021, 9(5), 433; https://doi.org/10.3390/vaccines9050433 Received: 9 April 2021 / Revised: 21 April 2021 / Accepted: 22 April 2021 / Published: 27 April 2021 (This article belongs to the Special Issue Unraveling SARS-CoV-2 Pathogenesis: Development of Vaccines and Therapeutics for COVID-19) Download Browse Figures Versions Notes Abstract Since the worldwide COVID-19 pandemic was declared a year ago, the search for vaccines has become the top priority in order to restore normalcy after 2.5 million deaths worldwide, overloaded sanitary systems, and a huge economic burden. Vaccine development has represented a step towards the desired herd immunity in a short period of time, owing to a high level of investment, the focus of researchers, and the urge for the authorization of the faster administration of vaccines. Nevertheless, this objective may only be achieved by pursuing effective strategies and policies in various countries worldwide. In the present review, some aspects involved in accomplishing a successful vaccination program are addressed, in addition to the importance of vaccination in a pandemic in the face of unwillingness, conspiracy theories, or a lack of information among the public. Moreover, we provide some updated points related to the landscape of the clinical development of vaccine candidates, specifically, the top five vaccines that are already being assessed in Phase IV clinical trials (BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, and CoronaVac)

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Tree growth response to drought partially explains regional-scale growth and mortality patterns in Iberian forests

    Get PDF
    Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981–2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.This study was financially supported by Xunta de Galicia, Grant/Award Number PGIDIT06PXIB502262PR, GRC GI-1809; INIA, Grant/Award Number RTA2006-00117; CANOPEE, 2014-2020-FEDER funds, Spanish Science Ministry RTI2018-096884-B-C31, RTI2018-096884-B-C33, AGL2017-83828-C2-2R, RTI2018-096884-B-C3,1 and RTI2018-096884-B-C32 projects. Gabriel Sangüesa-Barreda was supported by a “Juan de la Cierva-Formación” grant from MINECO (FJCI 2016-30121). Antonio Gazol and Paloma Ruiz-Benito were supported by a project “2018 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.” Ana-Maria Hereş was supported by the project PN-III-P1-1.1-TE-2019-1099 financed by the Romanian Ministry of Education and Research through UEFISCDI. Raúl Sánchez-Salguero was supported by VULBOS project (UPO-1263216, FEDER Funds, Andalusia Regional Government, Consejería de Economía, Conocimiento, Empresas y Universidad 2014-2020). Paloma Ruiz-Benito was supported by the Community of Madrid Region under the framework of the multi-year Agreement with the University of Alcalá (Stimulus to Excellence for Permanent University Professors, EPU-INV/2020/010) and the University of Alcalá “Ayudas para la realización de Proyectos para potenciar la Creación y Consolidación de Grupos de Investigación.” Andrea Hevia was supported by PinCaR project (UHU-1266324, FEDER Funds, Andalusia Regional Government, Consejería de Economía, Conocimiento, Empresas y Universidad 2014-2020).Peer reviewe
    corecore