84 research outputs found
Marine microbial metagenomes sampled across space and time
Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems
Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments
Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography
Quality indicators for patients with traumatic brain injury in European intensive care units
Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measur
Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research
No abstract available
How do 66 European institutional review boards approve one protocol for an international prospective observational study on traumatic brain injury? Experiences from the CENTER-TBI study
Background The European Union (EU) aims to optimize patient protection and efficiency of health-care research by harmonizing procedures across Member States. Nonetheless, further improvements are required to increase multicenter research efficiency. We investigated IRB procedures in a large prospective European multicenter study on traumatic brain injury (TBI), aiming to inform and stimulate initiatives to improve efficiency. Methods We reviewed relevant documents regarding IRB submission and IRB approval from European neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI). Documents included detailed information on IRB procedures and the duration from IRB submission until approval(s). They were translated and analyzed to determine the level of harmonization of IRB procedures within Europe. Results From 18 countries, 66 centers provided the requested documents. The primary IRB review was conducted centrally (N = 11, 61%) or locally (N = 7, 39%) and primary IRB approval was obtained after one (N = 8, 44%), two (N = 6, 33%) or three (N = 4, 23%) review rounds with a median duration of respectively 50 and 98 days until primary IRB approval. Additional IRB approval was required in 55% of countries and could increase duration to 535 days. Total duration from submission until required IRB approval was obtained was 114 days (IQR 75-224) and appeared to be shorter after submission to local IRBs compared to central IRBs (50 vs. 138 days, p = 0.0074). Conclusion We found variation in IRB procedures between and within European countries. There were differences in submission and approval requirements, number of review rounds and total duration. Research collaborations could benefit from the implementation of more uniform legislation and regulation while acknowledging local cultural habits and moral values between countries.Peer reviewe
Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.
INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches
Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury
Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations
Recommended from our members
Quality indicators for patients with traumatic brain injury in European intensive care units: a CENTER-TBI study
Abstract: Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measurement and improvement. Methods: Our analysis was based on 2006 adult patients admitted to 54 ICUs between 2014 and 2018, enrolled in the CENTER-TBI study. Indicator scores were calculated as percentage adherence for structure and process indicators and as event rates or median scores for outcome indicators. Feasibility was quantified by the completeness of the variables. Discriminability was determined by the between-centre variation, estimated with a random effect regression model adjusted for case-mix severity and quantified by the median odds ratio (MOR). Statistical uncertainty of outcome indicators was determined by the median number of events per centre, using a cut-off of 10. Results: A total of 26/42 indicators could be calculated from the CENTER-TBI database. Most quality indicators proved feasible to obtain with more than 70% completeness. Sub-optimal adherence was found for most quality indicators, ranging from 26 to 93% and 20 to 99% for structure and process indicators. Significant (p < 0.001) between-centre variation was found in seven process and five outcome indicators with MORs ranging from 1.51 to 4.14. Statistical uncertainty of outcome indicators was generally high; five out of seven had less than 10 events per centre. Conclusions: Overall, nine structures, five processes, but none of the outcome indicators showed potential for quality improvement purposes for TBI patients in the ICU. Future research should focus on implementation efforts and continuous reevaluation of quality indicators. Trial registration: The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582)
Recommended from our members
Quality indicators for patients with traumatic brain injury in European intensive care units: a CENTER-TBI study
Abstract: Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measurement and improvement. Methods: Our analysis was based on 2006 adult patients admitted to 54 ICUs between 2014 and 2018, enrolled in the CENTER-TBI study. Indicator scores were calculated as percentage adherence for structure and process indicators and as event rates or median scores for outcome indicators. Feasibility was quantified by the completeness of the variables. Discriminability was determined by the between-centre variation, estimated with a random effect regression model adjusted for case-mix severity and quantified by the median odds ratio (MOR). Statistical uncertainty of outcome indicators was determined by the median number of events per centre, using a cut-off of 10. Results: A total of 26/42 indicators could be calculated from the CENTER-TBI database. Most quality indicators proved feasible to obtain with more than 70% completeness. Sub-optimal adherence was found for most quality indicators, ranging from 26 to 93% and 20 to 99% for structure and process indicators. Significant (p < 0.001) between-centre variation was found in seven process and five outcome indicators with MORs ranging from 1.51 to 4.14. Statistical uncertainty of outcome indicators was generally high; five out of seven had less than 10 events per centre. Conclusions: Overall, nine structures, five processes, but none of the outcome indicators showed potential for quality improvement purposes for TBI patients in the ICU. Future research should focus on implementation efforts and continuous reevaluation of quality indicators. Trial registration: The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582)
Recommended from our members
Use and impact of high intensity treatments in patients with traumatic brain injury across Europe: a CENTER-TBI analysis
Abstract: Purpose: To study variation in, and clinical impact of high Therapy Intensity Level (TIL) treatments for elevated intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across European Intensive Care Units (ICUs). Methods: We studied high TIL treatments (metabolic suppression, hypothermia (< 35 °C), intensive hyperventilation (PaCO2 < 4 kPa), and secondary decompressive craniectomy) in patients receiving ICP monitoring in the ICU stratum of the CENTER-TBI study. A random effect logistic regression model was used to determine between-centre variation in their use. A propensity score-matched model was used to study the impact on outcome (6-months Glasgow Outcome Score-extended (GOSE)), whilst adjusting for case-mix severity, signs of brain herniation on imaging, and ICP. Results: 313 of 758 patients from 52 European centres (41%) received at least one high TIL treatment with significant variation between centres (median odds ratio = 2.26). Patients often transiently received high TIL therapies without escalation from lower tier treatments. 38% of patients with high TIL treatment had favourable outcomes (GOSE ≥ 5). The use of high TIL treatment was not significantly associated with worse outcome (285 matched pairs, OR 1.4, 95% CI [1.0–2.0]). However, a sensitivity analysis excluding high TIL treatments at day 1 or use of metabolic suppression at any day did reveal a statistically significant association with worse outcome. Conclusion: Substantial between-centre variation in use of high TIL treatments for TBI was found and treatment escalation to higher TIL treatments were often not preceded by more conventional lower TIL treatments. The significant association between high TIL treatments after day 1 and worse outcomes may reflect aggressive use or unmeasured confounders or inappropriate escalation strategies. Take home message: Substantial variation was found in the use of highly intensive ICP-lowering treatments across European ICUs and a stepwise escalation strategy from lower to higher intensity level therapy is often lacking. Further research is necessary to study the impact of high therapy intensity treatments. Trial registration: The core study was registered with ClinicalTrials.gov, number NCT02210221, registered 08/06/2014, https://clinicaltrials.gov/ct2/show/NCT02210221?id=NCT02210221&draw=1&rank=1 and with Resource Identification Portal (RRID: SCR_015582)
- …