45 research outputs found

    Building consensus on water use assessment of livestock production systems and supply chains: outcome and recommendations from the FAO LEAP partnership.

    Get PDF
    The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only ?blue water?); as well as the assessment of overall water productivity of the system (including ?green? and ?blue water? consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sectors

    Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

    Get PDF
    We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil

    The value of manure - Manure as co-product in life cycle assessment

    Get PDF
    Research ArticleLivestock production is important for food security, nutrition, and landscape maintenance, but it is associated with several environmental impacts. To assess the risk and benefits arising from livestock production, transparent and robust indicators are required, such as those offered by life cycle assessment. A central question in such approaches is how environmental burden is allocated to livestock products and to manure that is re-used for agricultural production. To incentivize sustainable use of manure, it should be considered as a co-product as long as it is not disposed of, or wasted, or applied in excess of crop nutrient needs, in which case it should be treated as a waste. This paper proposes a theoretical approach to define nutrient requirements based on nutrient response curves to economic and physical optima and a pragmatic approach based on crop nutrient yield adjusted for nutrient losses to atmosphere and water. Allocation of environmental burden to manure and other livestock products is then based on the nutrient value from manure for crop production using the price of fertilizer nutrients. We illustrate and discuss the proposed method with two case studiesinfo:eu-repo/semantics/publishedVersio

    Livestock and water quality

    No full text
    In Drechsel, Pay; Marjani Zadeh, S.; Salcedo, F. P. (Eds.). Water quality in agriculture: risks and risk mitigation. Rome, Italy: FAO; Colombo, Sri Lanka: International Water Management Institute (IWMI)

    Ultrafast Dynamics in the DNA Building Blocks Thymidine and Thymine Initiated By Ionizing Radiation

    Get PDF
    Understanding how energetic charged particles damage DNA is crucial for improving radiotherapy techniques such as hadron therapy and for the development of new radiosensitizer drugs. In the present study, the damage caused by energetic particles was simulated by measuring the action of extreme ultraviolet (XUV) attosecond pulses on the DNA building blocks thymine and thymidine. This allowed the ultrafast processes triggered by direct ionization to be probed with an optical pulse with a time resolution of a few femtoseconds. By measuring the yields of fragment ions as a function of the delay between the XUV pulse and the probe pulse, a number of transient processes typically lasting 100 femtoseconds or less were observed. These were particularly strong in thymidine which consists of the thymine base attached to a deoxyribose sugar. This dynamics was interpreted as excited states of the cation, formed by the XUV pulse, rapidly decaying via non-adiabatic coupling between electronic states. This provides the first experimental insight into the mechanisms which immediately proceed from the action of ionizing radiation on DNA and provides a basis on which further theoretical and experimental studies can be conducted

    Resonantly Enhanced Multi-Photon Ionization Spectrum of the Neutral Green Fluorescent Protein Chromophore

    Get PDF
    The photophysics of the green fluorescent protein is governed by the electronic structure of the chromophore at the heart of its β-barrel protein structure. We present the first two-color, resonance-enhanced, multiphoton ionization spectrum of the isolated neutral chromophore in vacuo with supporting electronic structure calculations. We find the absorption maximum to be 3.65 ± 0.05 eV (340 ± 5 nm), which is blue-shifted by 0.5 eV (55 nm) from the absorption maximum of the protein in its neutral form. Our results show that interactions between the chromophore and the protein have a significant influence on the electronic structure of the neutral chromophore during photoabsorption and provide a benchmark for the rational design of novel chromophores as fluorescent markers or photomanipulators

    Preferred orientation of chopped fibers in polymer-based composites processed by selective laser sintering and fused deposition modeling: Effects on mechanical properties

    No full text
    The orientation of reinforcing fibers in polymer-based composites greatly affects their mechanical features. It is known that different orientations of continuous fibers in the stacked layers of a laminate play a crucial role in providing an isotropic mechanical behavior, while the alignment of chopped fibers in injection molding of composites results in a degree of anisotropy. Recent additive manufacturing techniques have offered a way of controlling the fiber orientation. This article aims to investigate the effect of fiber orientation on the mechanical properties of polyamide/carbon fiber composites processed by fused deposition modeling and selective laser sintering. Tensile samples which had different fibers and layer interface with respect to the sample axis (and therefore to the tensile load) were produced. Tensile tests were performed at different strain rates; the tensile properties and the fracture surface morphology were correlated with the processing method and the sample microstructure. The best strength and stiffness were observed when the fibers and the layer interfaces were parallel to the sample axis
    corecore