20 research outputs found

    Evaluating the impact of river restoration on the local groundwater and ecological system: a case study in NE Flanders

    Get PDF
    River restoration changes the interaction between groundwater and surface water. Therefore, it is expected to have an impact on ecosystems at the interface between groundwater and surface water. Quantifying and generalizing the level of change of this interaction for different hydrogeological environments is scientifically and practically challenging. In this paper we investigated the impact of different restoration measures and the effect on the interaction of the temporal resolution of the groundwater modeling methodology. The interaction is analysed in the water bodies and wetlands in the valley of the Zwarte Beek, one of the most valuable nature reserves of Flanders. In the past, several changes have been made to the river and drainage system. These adaptations are now considered to be bottlenecks in maintaining a good ecological and hydrological status of its water dependent biotopes. Hence, in the context of the EU Water Framework Directive, it is necessary to (at least partly) restore the initial natural situation. The measures proposed include the reinstatement of old meanders and the removal of a weir. By removing the weir, fish migration is again possible. Reconnecting old meanders increases the habitat diversity. We used transient groundwater modeling to evaluate the impact on the groundwater system of the wetlands. Results indicate that a peat layer, present in most of the wetland, minimizes the effects of the restoration on the groundwater table. The largest changes are confined to the areas near the old meanders and the weir. Steady-state situations do not allow a calculation of average lowest and highest groundwater levels, which are essential for simulating ecological site conditions. Hence, transient simulations with 14 days time steps are required to detect a considerably greater range of groundwater fluctuation than indicated by the seasonal simulation. It is shown that the river restoration project thus resulted in an improvement of the structure of the watercourse rather than the rewetting of the valley. We concluded also that high resolution transient groundwater modeling is an essential step towards river restoration and ecohydrological predictions

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    Effect of milling on colour and nutritional properties of rice

    No full text
    Brown rice (long-grain variety Puntal) was abrasively milled (0-100 s) to various degrees of milling (DOM, 0-25%). The non-linear relationship between milling time and DOM indicated a variability in hardness within the different rice fractions. The hardness of the bran layers increased from outer to inner bran layers, while the different endosperm fractions were of comparable hardness. The colour parameters L*, a* and b* and extinction measurements of water-saturated butanol extracts of flour, from rice with different DOM, indicated that bran contained much more yellow and red pigment than endosperm. The levels of yellow and red pigment decreased from the surface of the brown rice to the middle endosperm (DOM = 15%). Once bran (DOM = 9%) and outer endosperm (additional DOM = 6%) were removed, the yellowness and redness of the middle endosperm of the raw rice remained constant, indicating that the pigments were uniformly distributed in the middle endosperm. Cooking of rice containing residual bran layers (DOM 9% resulted in products of constant brightness and redness but with yellowness which decreased as a function of DOM. Proteins, minerals and starch were not uniformly distributed in the brown rice kernel. The endosperm (DOM > 9%), contained most of the rice kernel proteins (84.2%), and proteins were mostly concentrated in the outer endosperm (9% < DOM < 15%). Bran (0% < DOM < 9%) contained most of the minerals (61.0%), and starch (84.6%) was concentrated in the core endosperm fraction (DOM 25%). (c) 2005 Elsevier Ltd. All rights reserved.status: publishe

    Helical tomotherapy in head and neck cancer: A european single-center experience

    No full text
    Background. We report on a retrospective analysis of 147 patients with early and locoregionally advanced squamous cell head and neck cancer (SCCHN) treated with helical tomotherapy (HT). Patients and Methods. Included were patients with SCCHN of the oral cavity (OC), oropharynx (OP), hypopharynx (HP), or larynx (L) consecutively treated in one radiotherapy center in 2008 and 2009.The prescribed HT dose was 60-66 Gy in the postoperative setting (group A) and 66-70 Gy when given as primary treatment (group B). HT was given alone, concurrent with systemic therapy (ST), that is, chemotherapy, biotherapy, or both, and with or without induction therapy (IT). Acute and late toxicities are reported using standard criteria; locoregional failure/progression (LRF), distant metastases (DM), and second primary tumors (SPT) were documented, and event-free survival (EFS) and overall survival (OS) were calculated from the start of HT. Results. Group A patients received HT alone in 22 cases and HT + ST in 20 cases; group B patients received HT alone in 17 cases and HT + ST in 88 cases. Severe (grade > 3) acute mucosal toxicity and swallowing problems increased with more additional ST. After a median follow-up of 44 months, grade >2 late toxicity after HT + ST was approximately twice that of HT alone for skin, subcutis, pharynx, and larynx. Forty percent had grade >2 late xerostomia, and 29% had mucosal toxicity. At 3 years, LRF/DM/SPT occurred in 7%/7%/17% and 25%/13%/5% in groups A and B, respectively, leading to a 3-year EFS/OSof 64%/74%and 56%/63% in groups A and B, respectively. Conclusion. The use of HT alone or in combination with ST is feasible and promising and has a low late fatality rate. However, late toxicity is nearly twice as high when ST is added to HT

    The second-generation exportin-1 inhibitor KPT-8602 demonstrates potent activity against acute lymphoblastic leukemia

    No full text
    Human exportin-1 (XPO1) is the key nuclear-cytoplasmic transport protein that exports many cargo proteins out of the nucleus. Inducing nuclear accumulation of these proteins by inhibition of XPO1 causes cancer cell death. First clinical validation of pharmacological inhibition of XPO1 was obtained with the Selective Inhibitor of Nuclear Export (SINE) compound selinexor (KPT-330) demonstrating activity in Phase-II/IIb clinical trials when dosed 1 - 3 times weekly. The second-generation SINE compound KPT-8602 shows improved tolerability and can be dosed daily. Here we investigate and validate the drug-target interaction of KPT-8602 and explore its activity against acute lymphoblastic leukemia (ALL).status: publishe

    Assessing sampling coverage of species distribution in biodiversity databases

    Get PDF
    Abstract Aim Biodiversity databases are valuable resources for understanding plant species distributions and dynamics, but they may insufficiently represent the actual geographic distribution and climatic niches of species. Here we propose and test a method to assess sampling coverage of species distribution in biodiversity databases in geographic and climatic space. Location Europe. Methods Using a test selection of 808,794 vegetation plots from the European Vegetation Archive (EVA), we assessed the sampling coverage of 564 European vascular plant species across both their geographic ranges and realized climatic niches. Range maps from the Chorological Database Halle (CDH) were used as background reference data to capture species geographic ranges and to derive species climatic niches. To quantify sampling coverage, we developed a box-counting method, the Dynamic Match Coefficient (DMC), which quantifies how much a set of occurrences of a given species matches with its geographic range or climatic niche. DMC is the area under the curve measuring the match between occurrence data and background reference (geographic range or climatic niche) across grids with variable resolution. High DMC values indicate good sampling coverage. We applied null models to compare observed DMC values with expectations from random distributions across species ranges and niches. Results Comparisons with null models showed that, for most species, actual distributions within EVA are deviating from null model expectations and are more clumped than expected in both geographic and climatic space. Despite high interspecific variation, we found a positive relationship in DMC values between geographic and climatic space, but sampling coverage was in general more random across geographic space. Conclusion Because DMC values are species-specific and most biodiversity databases are clearly biased in terms of sampling coverage of species occurrences, we recommend using DMC values as covariates in macroecological models that use species as the observation unit. This article is protected by copyright. All rights reserved.Peer reviewe
    corecore