381 research outputs found
Anoxic nitrification in marine sediments
Nitrate peaks are found in pore-water profiles in marine sediments at depths considerably
below the conventional zone of oxic nitrification. These have been interpreted to represent nonsteady-
state effects produced by the activity of nitrifying bacteria, and suggest that nitrification
occurs throughout the anoxic sediment region. In this study, ÎŁNO3 peaks and molecular analysis of
DNA and RNA extracted from anoxic sediments of Loch Duich, an organic-rich marine fjord, are consistent
with nitrification occurring in the anoxic zone. Analysis of ammonia oxidiser 16S rRNA gene
fragments amplified from sediment DNA indicated the abundance of autotrophic ammonia-oxidising
bacteria throughout the sediment depth sampled (40 cm), while RT-PCR analysis indicated their
potential activity throughout this region. A large non-steady-state pore-water ÎŁNO3 peak at ~21 cm
correlated with discontinuities in this ammonia-oxidiser community. In addition, a subsurface nitrate
peak at ~8 cm below the oxygen penetration depth, correlated with the depth of a peak in nitrification
rate, assessed by transformation of 15N-labelled ammonia. The source of the oxidant required to
support nitrification within the anoxic region is uncertain. It is suggested that rapid recycling of N is
occurring, based on a coupled reaction involving Mn oxides (or possibly highly labile Fe oxides)
buried during small-scale slumping events. However, to fully investigate this coupling, advances in
the capability of high-resolution pore-water techniques are required
Tunneling times with covariant measurements
We consider the time delay of massive, non-relativistic, one-dimensional
particles due to a tunneling potential. In this setting the well-known Hartman
effect asserts that often the sub-ensemble of particles going through the
tunnel seems to cross the tunnel region instantaneously. An obstacle to the
utilization of this effect for getting faster signals is the exponential
damping by the tunnel, so there seems to be a trade-off between speedup and
intensity. In this paper we prove that this trade-off is never in favor of
faster signals: the probability for a signal to reach its destination before
some deadline is always reduced by the tunnel, for arbitrary incoming states,
arbitrary positive and compactly supported tunnel potentials, and arbitrary
detectors. More specifically, we show this for several different ways to define
``the same incoming state'' and ''the same detector'' when comparing the
settings with and without tunnel potential. The arrival time measurements are
expressed in the time-covariant approach, but we also allow the detection to be
a localization measurement at a later time.Comment: 12 pages, 2 figure
Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu
The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been
used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at
CLEO-c and the B factories suggest a branching ratio for both decays somewhat
higher than the Standard Model prediction using f_D(s) from unquenched lattice
calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model
(Type II) would also mediate these decays, but any sizeable contribution from
H+- can only suppress the branching ratios and consequently is now slightly
disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+-
from such decays can be competitive with and complementary to analogous
constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+-
-> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) <
250 MeV.Comment: 18 pages, 4 figure
Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies
CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxanâą), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalinâą) and I-131 tositumomab (Bexxarâą). Radiation therapy effects are due to beta emissions with path lengths of 1â5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%â90% in low-grade and follicular lymphoma and 40%â50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement
Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons
The quaternion Dirac equation in presence of generalized electromagnetic
field has been discussed in terms of two gauge potentials of dyons.
Accordingly, the supersymmetry has been established consistently and thereafter
the one, two and component Dirac Spinors of generalized quaternion Dirac
equation of dyons for various energy and spin values are obtained for different
cases in order to understand the duality invariance between the electric and
magnetic constituents of dyons.Comment: Key words: Supersymmetry, quaternion, Dirac equation, dyons PACS No.:
11.30.Pb, 14.80.Ly, 03.65.G
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2
The oxidation of methane, the main component of natural gas, to selectively form oxygenated chemical feedstocks using molecular oxygen has been a long-standing grand challenge in catalysis. Here, using gold nanoparticles supported on the zeolite ZSM-5, we introduce a method to oxidize methane to methanol and acetic acid in water at temperatures between 120 and 240â°C using molecular oxygen in the absence of any added coreductant. Electron microscopy reveals that the catalyst does not contain gold atoms or clusters, but rather gold nanoparticles are the active component, while a mechanism involving surface adsorbed species is proposed in which methanol and acetic acid are formed via parallel pathways
Verifying nomenclature of DNA variants in submitted manuscripts: guidance for journals
Documenting variation in our genomes is important for research and clinical care. Accuracy in the description of DNA variants is therefore essential. To address this issue, the Human Variome Project convened a committee to evaluate the feasibility of requiring authors to verify that all variants submitted for publication complied with a widely accepted standard for description. After a pilot study of two journals, the committee agreed that requiring authors to verify that variants complied with Human Genome Variation Society nomenclature is a reasonable step toward standardizing the worldwide inventory of human variation.Molecular Technology and Informatics for Personalised Medicine and Healt
- âŠ