3,525 research outputs found

    The self-screening Hawking atmosphere

    Full text link
    A model is proposed in which the Hawking particles emitted by a black hole are treated as an envelope of matter that obeys an equation of state, and acts as a source in Einstein's equations. This is a crude but interesting way to accommodate for the back reaction. For large black holes, the solution can be given analytically, if the equation of state is p=κρp=\kappa\rho, with 0<κ<10<\kappa<1. The solution exhibits a singularity at the origin. If we assume NN free particle types, we can use a Hartree-Fock procedure to compute the contribution of one such field to the entropy, and the result scales as expected as 1/N1/N. A slight mismatch is found that could be attributed to quantum corrections to Einstein's equations, but can also be made to disappear when \k is set equal to one. The case κ=1\kappa=1 is further analysed.Comment: 19 pages, plain TeX, 5 figures PostScript. The author was made aware of further references to older work, in view of which modifications were made in order to avoid too much overlap. A discussion is added on the case $\kappa=1

    An exploratory qualitative study on perceptions about mosquito bed nets in the Niger Delta: what are the barriers to sustained use?

    Get PDF
    Background: The effectiveness of malaria control programs is determined by an array of complex factors, including the acceptability and sustained use of preventative measures such as the bed net. A small-scale exploratory study was conducted in several locations in the Niger Delta region, Nigeria, to discover barriers against the use of bed nets, in the context of a current drive to scale up net use in Nigeria. Methods: A qualitative approach with a convenience sample was used. One to one interviews with mostly male adult volunteers were undertaken which explored typical living and sleeping arrangements, and perceptions about and barriers against the use of the mosquito prevention bed net. Results: Several key issues emerged from the qualitative data. Bed nets were not reported as widely used in this small sample. The reasons reported for lack of use included issues of convenience, especially net set up and dismantling; potential hazard and safety concerns; issues related to typical family composition and nature of accommodation; humid weather conditions; and perceptions of cost and effectiveness. Most barriers to net use concerned issues about everyday practical living and sleeping arrangements and perceptions about comfort. Interviewees identified were aware of malaria infection risks, but several also indicated certain beliefs that were barriers to net use. Conclusions: Successful control of malaria and scale up of insecticide-treated net coverage relies on community perceptions and practice. This small study has illuminated a number of important everyday life issues, which remain barriers to sustained net use, and has clarified further questions to be considered in net design and in future research studies. The study highlights the need for further research on the human concerns that contribute to sustained use of nets or, conversely, present significant barriers to their use

    N-Benzyl­pyridin-2-amine

    Get PDF
    In the title compound, C12H12N2, the dihedral angle between the benzene and pyridine rings is 67.63 (8)°. Mol­ecules are linked into centrosymmetric dimers by a simple inter­molecular N—H⋯N hydrogen bond with graph-set motif R 2 2(8)

    Localized Flux Lines and the Bose Glass

    Full text link
    Columnar defects provide effective pinning centers for magnetic flux lines in high--TcT_{\rm c} superconductors. Utilizing a mapping of the statistical mechanics of directed lines to the quantum mechanics of two--dimensional bosons, one expects an entangled flux liquid phase at high temperatures, separated by a second--order localization transition from a low--temperature ``Bose glass'' phase with infinite tilt modulus. Recent decoration experiments have demonstrated that below the matching field the repulsive forces between the vortices may be sufficiently large to produce strong spatial correlations in the Bose glass. This is confirmed by numerical simulations, and a remarkably wide soft ``Coulomb gap'' at the chemical potential is found in the distribution of pinning energies. At low currents, the dominant transport mechanism in the Bose glass phase proceeds via the formation of double kinks between not necessarily adjacent columnar pins, similar to variable--range hopping in disordered semiconductors. The strong correlation effects originating in the long--range vortex interactions drastically reduce variable--range hopping transport.Comment: 10 pages, latex ("lamuphys.sty" file included), 6 figures can be obtained from the author ([email protected]); to appear in Proc. XIV Sitges conference on "Complex Behaviour of Glassy Systems" (Springer--Verlag

    Can eccentric binary millisecond pulsars form by accretion induced collapse of white dwarfs?

    Full text link
    Binary radio pulsars are generally believed to have been spun up to millisecond periods (i.e. recycling) via mass accretion from their donor stars, and they are the descendants of neutron star low-mass X-ray binaries. However, some studies indicate that the formation of pulsars from the accretion-induced collapse (AIC) of accreting white dwarfs (WDs) cannot be excluded. In this work, we use a population synthesis code to examine if the AIC channel can produce eccentric binary millisecond pulsars (BMSPs) in the Galaxy. Our simulated results indicate that, only when the natal MSPs receive a relatively strong kick (\ga100\rm km\,s^{-1}), can the AIC channel produce 10180\sim 10-180 eccentric (e>0.1e>0.1) BMSPs in the Galaxy, most of which are accompanied by a Helium star. Such a kick seems to be highly unlikely in the conventional AIC process, hence the probability of forming eccentric BMSPs via the AIC channel can be ruled out. Even if a high kick is allowed, the AIC channel cannot produce eccentric BMSPs with an orbital period of \ga 20 days. Therefore, we propose that the peculiar BMSP PSR J1903+0327 cannot be formed by the AIC channel. However, the AIC evolutionary channel may produce some fraction of isolated millisecond pulsars, and even sub-millisecond pulsars if they really exist.Comment: 7 pages, 2 figures, accepted for publication in MNRA

    Plasticity of the Berry Ripening Program in a White Grape Variety

    Get PDF
    Grapevine (Vitis vinifera L) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices, defined as terroir, which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions

    A study of the inclusion of prelayers in InGaN/GaN single- and multiple-quantum-well structures

    Get PDF
    We report on the effects on the optical properties of blue-light emitting InGaN/GaN single- and multiple-quantum-well structures including a variety of prelayers. For each single-quantum-well structure containing a Si-doped prelayer, we measured a large blue shift of the photoluminescence peak energy and a significant increase in radiative recombination rate at 10 K. Calculations of the conduction and valence band energies show a strong reduction in the built-in electric field across the quantum well (QW) occurs when including Si-doped prelayers, due to enhancement of the surface polarization field which opposes the built-in field. The reduction in built-in field across the QW results in an increase in the electron–hole wavefunction overlap, increasing the radiative recombination rate, and a reduction in the strength of the quantum confined Stark effect, leading to the observed blue shift of the emission peak. The largest reduction of the built-in field occurred for an InGaN:Si prelayer, in which the additional InGaN/GaN interface of the prelayer, in close proximity to the QW, was shown to further reduce the built-in field. Study of multiple QW structures with and without an InGaN:Si prelayer showed the same mechanisms identified in the equivalent single-quantum-well structure.This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Numbers EP/I012591/1 and EP/H011676/1.This is the accepted manuscript. The final version's available from Wiley at http://dx.doi.org/10.1002/pssb.20145153

    A seamless assessment of the role of convection in the water cycle of the West African Monsoon

    Get PDF
    A suite of 40 day UK Met Office Unified Model simulations over West Africa during summer 2006 are analyzed to investigate the causes of biases in the position of the rainbelt and to understand the role of convection in the regional water budget. The simulations include climate, global operational, and limited area runs (grid spacings from 1.5 to 40 km), including two 12 km runs, one with parameterized and one with explicit convection. The most significant errors in the water cycle terms occur in the simulations with parameterized convection, associated with the diurnal cycle and the location of the convection. Errors in the diurnal cycle increase the northward advection of moisture out of the Sahel toward the Sahara but decrease the advection of moisture into the Sahel from further south, which limits the availability of moisture for Sahelian rainfall. These biases occur within the first 24 h, showing that they originate from the representation of fast physical processes, specifically, the convection scheme. Once these rainfall regimes have been established, the terms of the water budgets act to reinforce the biases, effectively locking the rainbelt's latitude. One of the simulations with parameterized convection does, however, produce a better latitudinal distribution of rainfall because on the first day it is better able to trigger convection in the Sahel. Accurate representation of the diurnal cycle of convection and the ability to trigger convection in a high convective inhibition environment is key to capturing the water cycle of the region and will improve the representation of the West African Monsoon
    corecore