142 research outputs found

    (R)-β-lysine Modified Elongation Factor P Functions in Translation Elongation

    Get PDF
    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational β-lysylation but not hydroxylation

    Discovery of conformationally constrained ALK2 inhibitors

    Get PDF
    Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG

    Cryptic Eimeria genotypes are common across the southern but not northern hemisphere

    Get PDF
    The phylum Apicomplexa includes parasites of medical, zoonotic and veterinary significance. Understanding the global distribution and genetic diversity of these protozoa is of fundamental importance for efficient, robust and long-lasting methods of control. Eimeria spp. cause intestinal coccidiosis in all major livestock animals and are the most important parasites of domestic chickens in terms of both economic impact and animal welfare. Despite having significant negative impacts on the efficiency of food production, many fundamental questions relating to the global distribution and genetic variation of Eimeria spp. remain largely unanswered. Here, we provide the broadest map yet of Eimeria occurrence for domestic chickens, confirming that all the known species (Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox, Eimeria tenella) are present in all six continents where chickens are found (including 21 countries). Analysis of 248 internal transcribed spacer sequences derived from 17 countries provided evidence of possible allopatric diversity for species such as E. tenella (FST values ⩽0.34) but not E. acervulina and E. mitis, and highlighted a trend towards widespread genetic variance. We found that three genetic variants described previously only in Australia and southern Africa (operational taxonomic units x, y and z) have a wide distribution across the southern, but not the northern hemisphere. While the drivers for such a polarised distribution of these operational taxonomic unit genotypes remains unclear, the occurrence of genetically variant Eimeria may pose a risk to food security and animal welfare in Europe and North America should these parasites spread to the northern hemisphere

    Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: a review of the hydrogen futures literature

    Get PDF
    Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty in areas with long planning horizons, such as energy policy, and research into the future of hydrogen energy has been no exception. Such studies can play an important role in the development of shared visions of the future: creating powerful expectations of the potential of emerging technologies and mobilising resources necessary for their realisation. This paper reviews the hydrogen futures literature, using a six-fold typology to map the state of the art of scenario construction. The paper then explores the expectations embodied in the literature, through the 'answers' it provides to questions about the future of hydrogen. What are the drivers, barriers and challenges facing the development of a hydrogen economy? What are the key technological building blocks required? In what kinds of futures does hydrogen become important? What does a hydrogen economy look like, how and when does it evolve, and what does it achieve? The literature describes a diverse range of possible futures, from decentralised systems based upon the small-scale renewables, through to centralised systems reliant on nuclear energy or carbon-sequestration. There is a broad consensus that the hydrogen economy emerges only slowly, if all under 'Business as Usual' scenarios. Rapid transitions to hydrogen occur only under conditions of strong governmental support combined with, or as a result of, major 'discontinuities' such as shifts in society's environmental values, 'game changing' technological breakthroughs, or rapid increases in the oil price or speed and intensity of climate change

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    An Allosteric Inhibitor of Protein Arginine Methyltransferase 3

    Get PDF
    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets

    Assessing the Feasibility of Global Long-Term Mitigation Scenarios

    Get PDF
    This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required

    Exploiting an Allosteric Binding Site of PRMT3 Yields Potent and Selective Inhibitors

    Get PDF
    Protein arginine methyltransferases (PRMTs) play an important role in diverse biological processes. Among the nine known human PRMTs, PRMT3 has been implicated in ribosomal biosynthesis via asymmetric dimethylation of the 40S ribosomal protein S2 and in cancer via interaction with the DAL-1 tumor suppressor protein. However, few selective inhibitors of PRMTs have been discovered. We recently disclosed the first selective PRMT3 inhibitor, which occupies a novel allosteric binding site and is noncompetitive with both the peptide substrate and cofactor. Here we report comprehensive structure-activity relationship studies of this series, which resulted in the discovery of multiple PRMT3 inhibitors with submicromolar potencies. An X-ray crystal structure of compound 14u in complex with PRMT3 confirmed that this inhibitor occupied the same allosteric binding site as our initial lead compound. These studies provide the first experimental evidence that potent and selective inhibitors can be created by exploiting the allosteric binding site of PRMT3
    corecore