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Abstract

Protein arginine methyltransferases (PRMTs) play an important role in diverse biological 

processes. Among the nine known human PRMTs, PRMT3 has been implicated in ribosomal 

biosynthesis via asymmetric dimethylation of the 40S ribosomal protein S2 and in cancer via 

interaction with the DAL-1 tumor suppressor protein. However, few selective inhibitors of 

PRMTs have been discovered. We recently disclosed the first selective PRMT3 inhibitor, which 

occupies a novel allosteric binding site and is noncompetitive with both the peptide substrate and 

cofactor. Here we report comprehensive structure–activity relationship studies of this series, which 

resulted in the discovery of multiple PRMT3 inhibitors with submicromolar potencies. An X-ray 

crystal structure of compound 14u in complex with PRMT3 confirmed that this inhibitor occupied 

the same allosteric binding site as our initial lead compound. These studies provide the first 

experimental evidence that potent and selective inhibitors can be created by exploiting the 

allosteric binding site of PRMT3.
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INTRODUCTION

Among epigenetic writers, histone methyltransferases (HMTs, also known as protein 

methyltransferases (PMTs)) are divided into two categories: protein lysine 

methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), which 

catalyze lysine and arginine methylation, respectively.1,2 Nine human PRMTs have been 

identified to date and are further divided into three subtypes.3–5 Type I PRMTs (PRMT1–

4,6,8) catalyze arginine monomethylation and asymmetric dimethylation, while type II 

PRMTs such as PRMT5 catalyze arginine monomethylation and symmetric dimethylation. 

Recently, PRMT7 was characterized as a type III PRMT which catalyzes only arginine 

monomethylation.6 In addition to histone substrates, PRMTs also methylate many 

nonhistone proteins.3,7 PRMTs usually methylate GAR (glycine- and arginine-rich) motifs 

in their substrates,8,9 except for PRMT4, which instead methylates PGM (proline-, glycine-, 

methionine-, and arginine-rich) motifs.10,11 PRMT5 methylates both GAR and PGM 

motifs.10,12 Protein arginine methylation catalyzed by PRMTs plays a key role in various 

biological processes, including gene expression, transcriptional regulation, signal 

transduction, protein and RNA subcellular localization, RNA splicing, and DNA damage 

repair.3–5 Dysregulation of PRMTs has been implicated in a number of human conditions, 

including cancer.3–5

PRMT3 (protein arginine methyltransferase 3), a type I PRMT, was first reported in 199813 

and subsequently shown to catalyze asymmetric dimethylation of GAR motifs in its main 

substrate: the 40S ribosomal protein S2 (rpS2).14,15 The dimethylation of rpS2 by PRMT3 

results in stabilization of rpS2 and influences ribosomal biosynthesis.4,14–16 PRMT3 has 

also been reported to methylate the recombinant mammalian nuclear poly(A)-binding 

protein (PABPN1)17–19 and a histone peptide (H4 1–24) in vitro.20 In addition, the protein 

complex consisting of PRMT3, the von Hippel–Lindau (VHL) tumor suppressor protein, 

and ARF (alternative reading frame) methylates the tumor suppressor p53.21 Importantly, 

the tumor suppressor DAL-1 (differentially expressed in adeno-carcinoma of the lung-1) 

inhibits the methyltransferase activity of PRMT3 via its interaction with PRMT3, suggesting 

that DAL-1 may affect tumor growth by regulating PRMT3 function.22 Therefore, 

pharmacologic inhibition of PRMT3 may offer a potentially viable option for treating the 

tumors that display epigenetic down-regulation of DAL-1. In addition, PRMT3 expression 

levels are elevated in myocardial tissue from patients with atherosclerosis,23 potentially 

implicating PRMT3 in this and related diseases. Lastly, PRMT3 function has been reported 

to be essential for dendritic spine maturation in rats.24

Selective small-molecule inhibitors of PRMTs and PKMTs are important tools for 

investigating the biology of this emerging target class and testing disease and therapeutic 

hypotheses regarding these enzymes.5,25–28 However, only a limited number of selective 

inhibitors of PRMTs29–42,44,46 and PKMTs43–56 have been reported. In particular, selective 

small-molecule inhibitors of PRMT3 were lacking. We recently disclosed the first selective, 

allosteric inhibitor (compound 1 in Figure 1A) of PRMT3.57 This inhibitor occupies neither 

the substrate binding groove nor the cofactor binding site. Instead, it occupies a novel 

allosteric binding site revealed by the X-ray crystal structure of compound 1 in complex 
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with PRMT3 (PDB code 3SMQ). Subsequent mechanism of action (MOA) studies 

confirmed that this inhibitor is noncompetitive with both the peptide substrate and the 

cofactor.57 Here we report structure–activity relationship (SAR) studies that focused on 

extensively exploring three regions of the scaffold represented by compound 1. We describe 

the design, synthesis, and biochemical evaluation of novel compounds, which resulted in the 

discovery of potent and selective PRMT3 inhibitors. We obtained an X-ray crystal structure 

of the compound 14u–PRMT3 complex, which confirmed that this inhibitor occupied the 

same allosteric binding site previously described. These studies establish that the allosteric 

binding site of PRMT3 is druggable and can be exploited to generate potent and selective 

inhibitors.

RESULTS AND DISCUSSION

Design and Synthesis

To improve the potency of compound 1 (PRMT3, IC50 = 2.5 μM)57 and demonstrate that 

potent and selective inhibitors can be generated by exploiting the allosteric binding site of 

PRMT3, we investigated the following three regions of the chemical series represented by 

compound 1: (1) the left-hand side (LHS) bicyclic aromatic moiety, (2) the middle urea 

moiety, and (3) the right-hand side (RHS) moiety (Figure 1A). We previously reported that 

the uncommon cyclohexenylethyl group of compound 1 could be replaced by a more 

common and potentially stable group, the cyclohexylethyl group of compound 2 (PRMT3, 

IC50 = 1.0 μM), without any potency loss, and showed that the alkene functionality was 

unnecessary (Figure 1A).57

Because the X-ray crystal structure of compound 1 in complex with PRMT3 (PDB code 

3SMQ) reveals that the LHS benzothiadiazole moiety fits tightly in the allosteric pocket and 

forms a hydrogen bond with T466 (threonine 466) (Figure 1B),57 we designed the 

compounds outlined in Scheme 1 and Table 1 to determine whether the benzothiadiazole 

ring can be replaced with other fused bicyclic aromatic groups. A representative synthesis of 

these compounds (3–7) is shown in Scheme 1. The desired compounds were prepared via a 

standard urea formation reaction from commercially available anilines and 2-

cyclohexylethylamine using 1,1′-carbonyldiimi-dazole (CDI) as the coupling reagent.

We previously synthesized several analogues to confirm the hydrogen bonds between the 

middle urea moiety of compound 1 and the R396 (arginine 396) and E422 (glutamate 422) 

of PRMT3 (Figure 1B).57 To further investigate the middle urea moiety, we designed and 

synthesized the urea bioisosteres and more rigid analogues outlined in Scheme 2. The key 

intermediate 8 was prepared according to published procedures.58 Commercially available 

6-nitrobenzothiazole was first ring-opened to yield the disulfide intermediate, which was 

then converted to the 6-nitrobenzothiadiazole intermediate. Subsequent reduction of the 

nitro group afforded the intermediate 8. The nucleophilic substitution reaction of the 

intermediate 8 with 3,4-diethoxycyclobut-3-ene-1,2-dione59 formed the intermediate 9a, 

which was then converted to the desired products 10 and 11 by a second nucleophilic 

substitution reaction with 2-cyclohexylethylamine or 2-amino-1-phenylethanone. Similarly, 

nucleophilic substitution reaction of the intermediate 8 with diphenyl cyanocarbonimidate 

yielded the intermediate 9b, which was subsequently converted to the desired product 12 by 
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a second substitution reaction. The aminotriazole 13 was formed from 3-

cyclohexylpropanehydrazide and the intermediate 9c, which was prepared from the 

intermediate 8.

In the X-ray crystal structure of the inhibitor 1–PRMT3 complex, the RHS 

cyclohexenylethyl moiety makes hydrophobic interactions with a surface formed from the 

two subunits of the PRMT3 homodimer (Figure 1B). Because it was not clear what was 

required for these hydrophobic interactions and whether additional interactions could be 

made, we extensively explored this region by introducing functional groups with varying 

steric and electronic characteristics to either an aliphatic or an aromatic moiety. Synthesis of 

compounds 14a–v and 15 a–e (see structures in Table 3) is outlined in Scheme 3. 

Compounds 14a–v were prepared via a urea formation reaction from the intermediate 8 and 

various amines. Compounds 15a–e were obtained via a urea formation reaction followed by 

the removal of the Boc protecting group.

To further investigate the benzoyl moiety of compound 14u, the first PRMT3 inhibitor with 

submicromolar potency (see below and Table 3), we designed and synthesized the 

compounds outlined in Scheme 4 and Table 4. Compound 16 was prepared via a urea 

formation reaction followed by the removal of the Boc protecting group, similar to the 

synthesis of compounds 15a–e. Compounds 17–21 and 24 were synthesized via a urea 

formation reaction from the intermediate 8 and various amines. Compounds 22 and 23 were 

obtained via oxidation of respective alcohols 21 and 19 using the sulfur trioxide–pyridine 

complex. Compounds 16, 17, 19, 20, and 21 were prepared as racemic mixtures.

These synthesized compounds were evaluated in a radioactive biochemical assay which 

measures the transfer of the tritiated methyl group from the cofactor [3H]-S-adenosylme- 

thionine (SAM) to a peptide substrate. IC50 values of these compounds in this assay are 

summarized in Tables 1–4.

SAR of the LHS Bicyclic Aromatic Moiety

We previously reported that the replacement of the benzothiadiazole moiety (compound 2) 

with the benzothiazole (compound 3), which abolished the hydrogen bond with T466, 

resulted in complete loss of potency.57 This SAR finding confirmed the key hydrogen bond 

interaction between the middle nitrogen of the benzothiadiazole moiety and T466, revealed 

by the X-ray crystal structure of compound 1 in complex with PRMT3. Interestingly, the 

replacement of the benzothiadiazole moiety (compound 2) with the benzotriazole 

(compound 4), indazole (compound 5 or 6), or benzoxazolone (compound 7) moiety also led 

to total loss of potency (Table 1), suggesting that, in addition to making the hydrogen bond 

interaction with T466, the benzothiadiazole moiety is particularly well accommodated by 

the PRMT3 allosteric binding pocket due to its unique electronic nature and steric fit. 

Because these relatively minor modifications to the benzothiadiazole moiety were not 

tolerated, we did not attempt to introduce more drastic modifications such as substituted 

monocyclic aromatic or nonaromatic groups and have kept this LHS moiety constant during 

the subsequent SAR exploration of this hit series.
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SAR of the Middle Urea Moiety

The X-ray crystal structure of the inhibitor 1–PRMT3 complex reveals that the carbonyl 

group of the middle urea moiety forms a hydrogen bond with the guanidinium group of 

R396 and the two amino groups of the urea moiety form two hydrogen bonds with the 

carboxylate of E422 (glutamate 422) (Figure 1B).57 We previously synthesized a number of 

analogues for probing these hydrogen bond interactions and found that the replacement of 

the oxygen of the urea moiety, which abolished the hydrogen bond with R396, and N-

methylation of either nitrogen of the urea moiety, which impaired the hydrogen bonds with 

E422, led to complete loss of potency.57 These SAR results confirmed the key hydrogen 

bond interactions between the urea moiety of inhibitor 1 and the allosteric binding site of 

PRMT3.

We further investigated the middle urea moiety by design, synthesis, and biological 

evaluation of the urea bioisosteres and more rigid analogues outlined in Table 2. The 

diaminosquarate 10 displayed >100-fold potency loss compared with its urea analogue (2). 

Similarly, the diaminosquarate 11 was >200-fold less potent compared with its urea 

analogue (14u), which contains a preferred RHS moiety (see below and Table 3). In 

addition, the cyanoguanidine 12 and aminotriazole 13 showed no inhibitory activity against 

PRMT3 (IC50 values >100 μM). Taken together, these results suggest that the urea moiety is 

ideal for interacting with the allosteric binding pocket of PRMT3. We therefore held this 

moiety constant during subsequent SAR exploration.

SAR of the RHS Moiety

We previously reported that the uncommon cyclohexenylethyl group of compound 1 could 

be replaced by a more common and potentially stable group, the cyclohexylethyl group of 

compound 2, without any potency loss (Table 3).57 To improve potency, we extensively 

investigated this region by introducing functional groups with varying steric and electronic 

characteristics to either an aliphatic or an aromatic moiety (Table 3). The replacement of the 

cyclohexyl ring with a heterocycle such as tetrahydropyran (compound 14a), 1-piperidine 

(compound 14b), morpholine (compound 14c), 1-pyrrolidine (14e), and 4-piperidine 

(compound 15a) generally resulted in a decrease in potency. Similarly, compounds 15b–e, 

which contain a respective terminal amino group to potentially form additional hydrogen 

bond interaction(s) with backbone amides, were also less potent than compound 2. A longer 

chain (three-carbon versus two-carbon) was tolerated but did not lead to a significant 

increase in potency (14d versus 14c, 15d versus 15c, and 15e versus 15a). On the other 

hand, a shorter chain (one-carbon versus two-carbon) resulted in a complete loss of potency 

(14f versus 2). The replacement of the cyclohexyl group with a hydrogen (compound 14g) 

or tert-butyl group (compound 14h) also led to a significant decrease in potency. We next 

explored the replacement of the cyclohexylethyl group with a motif containing an aromatic 

ring. Although the unsubstituted benzyl group (compound 14i), three pyridinylmethyl 

groups (compounds 14j–l), and two benzyl groups substituted with an electron-donating 

group (compounds 14m,n) led to a significant decrease in potency compared with the cyclo-

hexylethyl group (compound 2), we were pleased to find that strong electron-withdrawing 

groups such as nitro (compound 14o) and methylsulfonyl (compound 14p) groups resulted 
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in similar or higher potency compared with the cyclohexylethyl group (compound 2). Other 

electron-withdrawing groups such as cyano (compound 14q), trifluoromethyl (compound 

14r), and fluoro (compound 14s) groups gave either similar or slightly lower potency 

compared with the cyclohexylethyl group (compound 2) but significantly better potency 

compared with the unsubstituted compound (14i) or electron-donating groups (compounds 

14m,n). Interestingly, moving the trifluoromethyl group from the para-position (compound 

14r) to the ortho-position (compound 14t) resulted in a significant decrease in potency. 

Further exploration of this aromatic moiety led to the discovery of compound 14u, which 

contains a benzoyl group, with an IC50 of 0.48 μM and good selectivity for PRMT3 over 

other methyltransferases (see below). We also found that a longer chain (three-carbon versus 

one-carbon) maintained good potency (14v versus 14s), which is consistent with the finding 

in the aliphatic subseries (see above).

Encouraged by the discovery of the first PRMT3 inhibitors with submicromolar potencies, 

we further investigated the benzoyl moiety of compound 14u (Table 4). The replacement of 

the carbonyl group (compound 14u) with an α-amino (compound 16), α-hydroxyl 

(compound 17), or α,α-difluoro (compound 18) group led to a decrease in potency. Adding 

a p-or o-fluoro group to the phenyl group did not significantly change the potency 

(compounds 19 and 20 versus compound 17). Interestingly, compound 21, which possesses 

a cyclohexyl group, was slightly more potent than compound 17, which possesses a phenyl 

group instead. Although the ketone 22 had potency similar to that of its alcohol analogue 

(compound 21), the ketone 23 was about 10-fold more potent than its corresponding alcohol 

(19). Further modifications of the ketone 22 led to the discovery of the amide 24, which is 

the most potent PRMT3 inhibitor to date with an IC50 of 0.23 μM. Taken together, these 

results indicate that modifications to the RHS moiety are well tolerated and can lead to a 

significant increase in potency. These studies resulted in the discovery of multiple PRMT3 

inhibitors with submicromolar potencies. Among them, compound 14u was further 

evaluated in subsequent selectivity, X-ray crystallography, and computational modeling 

studies.

Selectivity Assessment of Compound 14u

We next determined the selectivity of compound 14u against a number of 

methyltransferases, including PRMTs, PKMTs, and DNMT1 (DNA methyltransferase 1). 

As shown in Figure 2, compound 14u was at least 40-fold selective for PRMT3 over G9a, 

GLP, and SUV39H2 and completely inactive against PRMT5, SETD7, PRC2, SETD8, 

SETDB1, SUV420H1, SUV420H2, MLL1, SMYD3, SMYD2, DOT1L, and DNMT1. These 

results are consistent with the selectivity results of compound 1 reported previously,57 

suggesting that targeting the allosteric binding site of PRMT3 can yield selective inhibitors.

X-ray Crystal Structure of the Compound 14u–PRMT3 Complex

To better understand structural determinants for the increased potency of compound 14u, we 

solved the crystal structure of PRMT3 in complex with compound 14u. Similar to the 

binding mode of compound 1 reported previously,57 compound 14u binds at the allosteric 

site located at the interface between the two subunits of the PRMT3 homodimer (Figure 

3A). The benzothiadiazole ring and urea moiety engage hydrogen bonds with surrounding 
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side chains (Figure 3B). The benzoyl group is stacked against the guanidinium group of 

R396, which may explain, in part, the increased binding affinity over that of the parent 

compound. Nevertheless, we were surprised to observe that the additional carbonyl group is 

not better exploited in the crystal structure.

Modeling of Compound 14u Binding to PRMT3 Identifies a Potential Hydrogen Bond

Considering the significant increase in potency accompanying the introduction of a carbonyl 

group to the linker moiety, we were surprised by the absence of a hydrogen bond at this 

position in the crystal structure. We also noted that alternate rotameric states of K392 could 

bring its side chain within hydrogen-bonding distance of compound 14u’s carbonyl oxygen. 

To see whether such a conformation was energetically relevant, we ran a Monte Carlo-based 

energy minimization of the K392 side chain and found that the second lowest energy 

conformation was indeed forming a hydrogen bond with compound 14u, within less than 0.5 

kcal/mol of the lowest energy state (Figure 4). This suggests that K392 oscillates between 

two conformational states that are nearly equivalent energetically, one forming a hydrogen 

bond with compound 14u, the other not.

CONCLUSION

We designed, synthesized, and evaluated biochemically a series of novel compounds that 

explore three regions of the scaffold represented by compound 1. The key SAR results 

revealed by these studies include the following: (1) Modifications to the LHS 

benzothiadiazole moiety were not tolerated, which is consistent with the key finding 

revealed by the compound 1–PRMT3 X-ray cocrystal structure that the benzothiadiazole 

ring fits tightly in the allosteric pocket. (2) Similarly, modifications to the middle urea 

moiety were not tolerated, again consistent with the findings by the X-ray cocrystal 

structure. (3) On the other hand, modifications to the RHS cyclohexenylethyl moiety were 

well tolerated. Our extensive exploration of the RHS cyclohexenylethyl group resulted in the 

discovery of multiple PRMT3 inhibitors with submicromolar potencies. Among them, 

compound 14u was selective for PRMT3 over 15 other PRMTs, PKMTs, and DNMT1. The 

X-ray crystal structure of the compound 14u–PRMT3 complex confirmed that this inhibitor 

interacts with the same allosteric binding site. Taken together, these studies provide the first 

experimental evidence that the allosteric binding site of PRMT3 can be exploited to generate 

potent and selective inhibitors.

EXPERIMENTAL SECTION

Chemistry General Procedures

HPLC spectra for all compounds were acquired using an Agilent 6110 series system with a 

UV detector set to 254 nm. Samples were injected (5 μL) onto an Agilent Eclipse Plus, 4.6 × 

50 mm, 1.8 μM, C18 column at room temperature. Method 1: A linear gradient from 50% to 

100% B (MeOH + 0.1% acetic acid) in 5.0 min was followed by pumping 100% B for 

another 2 min with A being H2O + 0.1% acetic acid. Method 2: A linear gradient from 10% 

to 100% B (MeOH + 0.1% acetic acid) in 5.0 min was followed by pumping 100% B for 

another 2 min with A being H2O + 0.1% acetic acid. The flow rate was 1.0 mL/min. Mass 

Liu et al. Page 7

J Med Chem. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



spectrometry (MS) data were acquired in positive ion mode using an Agilent 6110 single-

quadrupole mass spectrometer with an electrospray ionization (ESI) source. Nuclear 

magnetic resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 400 

MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are 

reported in parts per million (δ). Preparative HPLC was performed on an Agilent Prep 1200 

series with a UV detector set to 254 nm. Samples were injected onto a Phenomenex Luna, 

75 × 30 mm, 5 μM, C18 column at room temperature. The flow rate was 30 mL/min. A 

linear gradient was used with 10% (or 50%) MeOH (A) in 0.1% TFA in H2O (B) to 100% 

MeOH (A). HPLC was used to establish the purity of target compounds; all compounds had 

>95% purity using the HPLC methods described above. High-resolution (positive ion) mass 

spectrometry (HRMS) for compounds 14u and 24 was performed using a Thermo LTqFT 

mass spectrometer under FT control at 100 000 resolution.

Synthesis of compounds 1–3 was reported previously.57

1-(1H-Benzo[d][1,2,3]triazol-6-yl)-3-(2-cyclohexylethyl)urea (4)—To a solution of 

6-amino-1,2,3-benzotriazole (72 mg, 0.538 mmol) in DMF (2.0 mL) was added N,N′-

carbonyldiimidazole (CDI; 106 mg, 0.654 mmol), and the resulting mixture was stirred for 5 

h at rt. Cyclohexylethylamine (109 mg, 0.861 mmol) was then added. After being stirred for 

6 h at rt, the resulting mixture was purified by preparative HPLC (50–100% methanol/0.1% 

TFA in H2O) to afford the title compound 4 as a white solid (65 mg, 42%): 1H NMR (400 

MHz, d6-DMSO) δ 15.25 (s, 1H), 8.73 (s, 1H), 8.08 (s, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.05 

(d, J = 8.5 Hz, 1H), 6.16 (s, 1H), 3.17–3.08 (m, 2H), 1.81–1.55 (m, 5H), 1.42–1.05 (m, 6H), 

0.97–0.81 (m, 2H); HPLC (method 2) 95%, tR 5.51 min; MS (ESI) m/z 288 [M + H]+.

1-(2-Cyclohexylethyl)-3-(1H-indazol-6-yl)urea (5)—The procedure used for 

preparation of compound 4 was followed for synthesis of compound 5. The title compound 5 
was obtained as a white solid (122 mg, 51%): 1H NMR (400 MHz, d6-DMSO) δ 12.69 (s, 

1H), 8.51 (s, 1H), 7.90 (s, 1H), 7.88 (s, 1H), 7.55 (d, J = 8.6 Hz, 1H), 6.81 (dd, J = 8.7, 1.7 

Hz, 1H), 6.09 (t, J = 5.5 Hz, 1H), 3.19–3.06 (m, 2H), 1.86–1.50 (m, 5H), 1.44–1.04 (m, 6H), 

0.96–0.82 (m, 2H); HPLC (method 2) 96%, tR 5.59 min; MS (ESI) m/z 287 [M + H]+.

1-(2-Cyclohexylethyl)-3-(1H-indazol-5-yl)urea (6)—The procedure used for 

preparation of compound 4 was followed for synthesis of compound 6. The title compound 6 
was obtained as a white solid (78 mg, 47%): 1H NMR (400 MHz, d4-MeOH) δ 7.95 (d, J = 

0.8 Hz, 1H), 7.78–7.75 (m, 1H), 7.45 (d, J = 8.9 Hz, 1H), 7.30 (dd, J = 8.9, 2.0 Hz, 1H), 

3.26–3.21 (m, 2H), 1.83–1.62 (m, 5H), 1.47–1.13 (m, 6H), 1.02–0.91 (m, 2H); 13C NMR 

(100 MHz, d4-MeOH) δ 159.0, 138.7, 134.4, 134.2, 124.5, 123.5, 111.6, 111.3, 38.8, 38.6, 

36.6, 34.4 (two carbons), 27.7, 27.4 (two carbons); HPLC (method 2) 98%, tR 5.45 min; MS 

287 [M + H]+.

1-(2-Cyclohexylethyl)-3-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)urea (7)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 7. 

The title compound 7 was obtained as a white solid (138 mg, 76%): 1H NMR (400 MHz, d6-

DMSO) δ 11.36 (s, 1H), 8.40 (s, 1H), 7.53 (d, J = 1.6 Hz, 1H), 7.00–6.85 (m, 2H), 6.04 (t, J 

= 5.6 Hz, 1H), 3.15–3.03 (m, 2H), 1.75–1.54 (m, 5H), 1.38–1.06 (m, 6H), 0.97–0.80 (m, 
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2H); 13C NMR (100 MHz, d6-DMSO) δ 155.7, 155.1, 143.89, 136.1, 124.4, 113.5, 109.9, 

100.8, 37.7, 37.2, 35.0, 33.1 (two carbons), 26.6, 26.2 (two carbons); HPLC (method 1) 

100%, tR 4.59 min; MS (ESI) m/z 304 [M + H]+.

6-Amino-1,2,3-benzothiadiazole (8)—6-Amino-1,2,3-benzothia-diazole (8) was 

synthesized according to previously reported procedures.57

3 - (Benzo [d ] [1,2,3] thiadiazol - 6- ylamino) - 4 - ((2 -
cyclohexylethyl)amino)cyclobut-3-ene-1,2-dione (10)—To a stirred solution of 3,4-

diethoxycyclobut-3-ene-1,2-dione (0.26 g, 1.5 mmol, 1.2 equiv) and zinc 

trifluoromethanesulfonate (59 mg, 0.12 mmol) in ethanol (4.0 mL) at room temperature was 

added 8 (184 mg, 1.22 mmol). After the solution was stirred for 1 h, a white precipitate was 

formed, which was centrifuged to remove the ethanol and washed with ethanol (2 mL) 

twice, yielding the intermediate as a white solid (309 mg, 92%). A mixture of the 

intermediate (67 mg, 0.244 mmol) and 2-cyclohexylethylamine (32 mg, 0.250 mmol) in 0.2 

mL of i-PrOH was heated by microwave irradiation to 120 °C for 10 min in a sealed tube. 

After concentration in vacuo, the crude product was purified by preparative HPLC with a 

gradient from 50% MeOH (A) in 0.1% TFA in H2O (B) to 100% MeOH (A) to afford the 

title compound 10 as a white solid (74 mg, 85%): 1H NMR (400 MHz, d6-DMSO) δ 10.12 

(s, 1H), 8.62 (d, J = 9.0 Hz, 1H), 8.25 (s, 1H), 7.93–7.70 (m, 2H), 3.74–3.57 (m, 2H), 1.83–

1.55 (m, 5H), 1.49 (q, J = 7.0 Hz, 2H), 1.43–1.28 (m, 1H), 1.29–1.05 (m, 3H), 1.01–0.82 (m, 

2H); 13C NMR (100 MHz, d6-DMSO) δ 184.9, 180.1, 169.8, 162.6, 153.9, 142.4, 140.6, 

124.3, 119.3, 106.5, 41.6, 38.0, 34.1, 32.5 (two carbons), 26.0, 25.7 (two carbons); HPLC 

(method 1) 96%, tR 5.39 min; MS (ESI) m/z 357 [M + H]+.

3-(Benzo[d][1,2,3]thiadiazol-6-ylamino)-4-((2-oxo-2-
phenylethyl)amino)cyclobut-3-ene-1,2-dione (11)—The procedure used for 

preparation of compound 10 was followed for synthesis of compound 11. The title 

compound 11 was obtained as a white solid (80 mg, 78%): 1H NMR (400 MHz, d6-DMSO) 

δ 10.53 (s, 1H), 8.66 (d, J = 9.0 Hz, 1H), 8.32 (s, 1H), 8.17 (s, 1H), 8.05–7.96 (m, 2H), 7.87 

(d, J = 8.9 Hz, 1H), 7.77–7.68 (m, 1H), 7.60 (t, J = 7.7 Hz, 2H), 5.29 (d, J = 5.6 Hz, 2H); 

HPLC (method 1) 98%, tR 3.66 min; MS (ESI) m/z 365 [M + H]+.

(E)-1-(Benzo[d][1,2,3]thiadiazol-6-yl)-2-cyano-3-(2-cyclohexylethyl)guanidine 
(12)—A mixture of 8 (65 mg, 0.430 mmol) and diphenyl cyanocarbonimidate (82 mg, 0.344 

mmol) in 0.4 mL of i-PrOH was heated by microwave irradiation to 100 °C for 60 min in a 

sealed tube. To the resulting mixture was added 2-cyclohexylethylamine (109 mg, 0.86 

mmol), and then the resulting mixuture was heated by microwave irradiation to 100 °C for 

another 30 min. The resulting residue was purified by preparative HPLC with a gradient 

from 50% MeOH (A) in 0.1% TFA in H2O (B) to 100% MeOH (A) to afford the title 

compound 12 as a white solid (43 mg, 38% in two steps): 1H NMR (400 MHz, d6-DMSO) δ 

9.50 (s, 1H), 8.61 (d, J = 9.0 Hz, 1H), 8.22 (s, 1H), 7.65 (t, J = 5.6 Hz, 1H), 7.57 (dd, J = 

9.0, 1.9 Hz, 1H), 3.33–3.25 (m, 2H), 1.77–1.56 (m, 5H), 1.48–1.39 (m, 2H), 1.36–1.06 (m, 

4H), 0.98–0.82 (m, 2H); HPLC (method 1) 100%, tR 5.12 min; MS (ESI) m/z 329 [M + H]+.
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N-(5-(2-Cyclohexylethyl)-4H-1,2,4-triazol-3-yl)benzo[d]-[1,2,3]thiadiazol-6-
amine (13)—To a stirred solution of 8 (82 mg, 0.54 mmol) in THF (2 mL) was added 

cyanogen bromide solution (0.11 mL, 5.0 M in CH3CN) at rt. The resulting mixture was 

stirred overnight at 40 °C. After removal of the solvents, to the solution of the residue in 

THF (1 mL) were added 2 drops of HCl solution in i-PrOH (5 N) and 3-

cyclohexylpropanehydrazide (184 mg, 1.08 mmol). The resulting mixture was heated by 

microwave irradiation to 160 °C for 30 min. After being concentrated, the residue was 

purified by preparative HPLC with a gradient from 50% MeOH (A) in 0.1% TFA in H2O 

(B) to 100% MeOH (A) to afford the title compound 13 as a white solid (57 mg, 32% in two 

steps): 1H NMR (400 MHz, d4-MeOH) δ 8.50 (d, J = 2.1 Hz, 1H), 8.44 (d, J = 9.1 Hz, 1H), 

7.59 (dd, J = 9.1, 2.1 Hz, 1H), 2.87–2.79 (m, 2H), 1.86–1.71 (m, 4H), 1.71–1.63 (m, 3H), 

1.37–1.14 (m, 4H), 1.06–0.92 (m, 2H); 13C NMR (100 MHz, d4-MeOH) δ 157.8, 157.3, 

154.8, 144.6, 144.0, 124.6, 119.9, 104.6, 38.4, 36.06, 34.0 (two carbons), 27.6, 27.3 (two 

carbons), 24.3; HPLC (method 1) 97%, tR 5.76 min; MS (ESI) m/z 329 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(tetrahydro-2H-pyran-4-yl)ethyl)urea 
(14a)—The procedure used for preparation of compound 4 was followed for synthesis of 

compound 14a. The title compound 14a was obtained as a white solid (52 mg, 47%): 1H 

NMR (400 MHz, d6-DMSO) δ 9.12 (s, 1H), 8.52 (d, J = 1.9 Hz, 1H), 8.50 (d, J = 9.1 Hz, 

1H), 7.59 (dd, J = 9.1, 2.0 Hz, 1H), 6.41 (t, J = 5.6 Hz, 1H), 3.82 (dd, J = 11.3, 3.6 Hz, 2H), 

3.30–3.21 (m, 2H), 3.21–3.11 (m, 2H), 1.66–1.47 (m, 3H), 1.40 (q, J = 6.8 Hz, 2H), 1.23–

1.07 (m, 2H); 13C NMR (100 MHz, d6-DMSO) δ 154.8, 153.2, 142.3, 142.2, 123.4, 119.1, 

105.1, 67.0 (two carbons), 36.7, 36.3, 32.6 (two carbons), 31.9; HPLC (method 1) 99%, tR 

3.23 min; MS (ESI) m/z 307 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(piperidin-1-yl)ethyl)-urea (14b)—The 

procedure used for preparation of compound 4 was followed for synthesis of 14b. The title 

compound 14b was obtained as a white solid (48 mg, 45%): 1H NMR (400 MHz, d6-

acetone) δ 10.04 (s, 1H), 8.65 (d, J = 1.9 Hz, 1H), 8.48 (d, J = 9.1 Hz, 1H), 8.00 (s, 1H), 

7.67 (dd, J = 9.1, 2.0 Hz, 1H), 3.92–3.83 (m, 2H), 3.77–3.68 (m, 2H), 3.50–3.42 (m, 2H), 

3.20–3.06 (m, 2H), 2.03–1.93 (m, 4H), 1.92–1.83 (m, 1H), 1.66–1.52 (m, 1H); 13C NMR 

(100 MHz, d6-acetone) δ 154.9, 143.5, 124.4, 120.1, 120.0, 106.2, 106.1, 59.6, 59.5, 54.6, 

54.5, 35.3, 23.9, 22.5; HPLC (method 2) 98%, tR 3.08 min; MS (ESI) m/z 306 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-morpholinoethyl)-urea (14c)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14c. 

The title compound 14c was obtained as a white solid (53 mg, 47%): 1H NMR (400 MHz, 

d4-MeOH) δ 8.51 (d, J = 1.9 Hz, 1H), 8.45 (d, J = 9.1 Hz, 1H), 7.56 (dd, J = 9.1, 2.0 Hz, 

1H), 4.15–4.00 (m, 2H), 3.81 (t, J = 11.6 Hz, 2H), 3.74–3.61 (m, 4H), 3.35 (t, J = 5.6 Hz, 

2H), 3.20 (t, J = 10.4 Hz, 2H); 13C NMR (100 MHz, d4-MeOH) δ 158.4, 155.5, 144.0, 

142.7, 124.5, 120.9, 107.4, 65.1 (two carbons), 59.4, 53.6 (two carbons), 35.6; HPLC 

(method 2) 99%, tR 2.63 min; MS (ESI) m/z 308 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(3-morpholinopropyl)-urea (14d)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14d. 
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The title compound 14d was obtained as a white solid (42 mg, 39%): 1H NMR (400 MHz, 

d4-MeOH) δ 8.48–8.46 (m, 1H), 8.44 (d, J = 9.1 Hz, 1H), 7.55 (dd, J = 9.1, 2.0 Hz, 1H), 

4.14–4.02 (m, 2H), 3.79 (t, J = 12.0 Hz, 2H), 3.58–3.47 (m, 2H), 3.37 (t, J = 6.5 Hz, 2H), 

3.29–3.23 (m, 2H), 3.16 (td, J = 12.4, 3.3 Hz, 2H), 2.07–1.97 (m, 2H); 13C NMR (100 MHz, 

d4-MeOH) δ 158.2, 155.4, 144.0, 142.9, 124.5, 120.8, 107.1, 65.1 (two carbons), 56.0, 53.2 

(two carbons), 37.6, 25.8; HPLC (method 2) 98%, tR 2.83 min; MS (ESI) m/z 322 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(pyrrolidin-1-yl)-ethyl)urea (14e)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14e. 

The title compound 14e was obtained as a white solid (48 mg, 45%): 1H NMR (400 MHz, 

d4-MeOH) δ 8.50 (d, J = 2.0 Hz, 1H), 8.44 (d, J = 9.1 Hz, 1H), 7.56 (dd, J = 9.1, 2.0 Hz, 

1H), 3.90–3.75 (m, 2H), 3.62 (t, J = 5.7 Hz, 2H), 3.39 (t, J = 5.7 Hz, 2H), 3.23–3.06 (m, 

2H), 2.25–2.10 (m, 2H), 2.11–1.95 (m, 2H); 13C NMR (100 MHz, d4-MeOH) δ 158.0, 

155.4, 143.9, 142.8, 124.5, 120.8, 107.2, 56.8, 55.6 (two carbons), 37.5, 23.9 (two carbons); 

HPLC (method 2) 100%, tR 2.69 min; MS (ESI) m/z 292 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(cyclohexylmethyl)urea (14f)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14f. The title 

compound 14f was obtained as a white solid (62 mg, 48%): 1H NMR (400 MHz, d6-DMSO) 

δ 9.07 (s, 1H), 8.55–8.42 (m, 2H), 7.58 (dd, J = 9.0, 2.1 Hz, 1H), 6.43 (t, J = 5.8 Hz, 1H), 

2.98 (t, J = 6.3 Hz, 2H), 1.73–1.64 (m, 4H), 1.64–1.54 (m, 1H), 1.47–1.35 (m, 1H), 1.26–

1.07 (m, 3H), 0.97–0.85 (m, 2H); 13C NMR (100 MHz, d6-DMSO) δ 154.8, 153.2, 142.3, 

142.2, 123.4, 119.1, 105.1, 45.3, 37.9, 30.3 (two carbons), 26.04, 25.4 (two carbons); HPLC 

(method 1) 98%, tR 5.28 min; MS (ESI) m/z 291 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-ethylurea (14g)—The procedure used for 

preparation of compound 4 was followed for synthesis of compound 14g. The title 

compound 14g was obtained as a white solid (67 mg, 55%): 1H NMR (400 MHz, d6-

DMSO) δ 9.13 (s, 1H), 8.52 (d, J = 1.8 Hz, 1H), 8.50 (d, J = 9.1 Hz, 1H), 7.59 (dd, J = 9.1, 

2.0 Hz, 1H), 6.40 (t, J = 5.5 Hz, 1H), 3.22–3.09 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H); 13C NMR 

(100 MHz, d6-DMSO) δ 154.7, 153.2, 142.3, 142.2, 123.4, 119.1, 105.2, 34.1, 15.3; HPLC 

(method 1) 100%, tR 2.03 min; MS (ESI) m/z 223 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(3,3-dimethylbutyl)urea (14h)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14h. The title 

compound 14h was obtained as a white solid (54 mg, 49%): 1H NMR (400 MHz, d6-

DMSO) δ 9.13 (s, 1H), 8.52 (d, J = 1.7 Hz, 1H), 8.50 (d, J = 9.0 Hz, 1H), 7.59 (dd, J = 9.1, 

2.0 Hz, 1H), 6.33 (t, J = 5.5 Hz, 1H), 3.20–3.07 (m, 2H), 1.45–1.32 (m, 2H), 0.92 (s, 

9H); 13C NMR (100 MHz, d6-DMSO) δ 155.1, 153.7, 142.8, 142.7, 123.9, 119.6, 105.6, 

43.8, 36.3, 30.0, 29.7 (three carbons); HPLC (method 1) 97%, tR 5.01 min; MS (ESI) m/z 

279 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-benzylurea (14i)—1-(Benzo[d]

[1,2,3]thiadiazol-6-yl)-3-benzylurea (14i) was synthesized according to previously reported 

procedures.57

Liu et al. Page 11

J Med Chem. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(pyridin-2-ylmethyl)urea (14j)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14j. The title 

compound 14j was obtained as a white solid (57 mg, 46%): 1H NMR (400 MHz, d6-DMSO) 

δ 9.83 (s, 1H), 8.74 (dd, J = 5.4, 0.8 Hz, 1H), 8.57–8.48 (m, 2H), 8.30 (td, J = 7.9, 1.6 Hz, 

1H), 7.79 (d, J = 8.0 Hz, 1H), 7.75–7.70 (m, 1H), 7.64 (dd, J = 9.1, 2.0 Hz, 1H), 7.42 (t, J = 

5.5 Hz, 1H), 4.63 (d, J = 5.3 Hz, 2H); 13C NMR (100 MHz, d6-DMSO) δ 156.5, 155.2, 

153.5, 143.9, 143.0, 142.3, 141.8, 124.2, 123.8, 123.5, 119.3, 105.7, 42.5; HPLC (method 2) 

99%, tR 4.15 min; MS (ESI) m/z 286 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(pyridin-3-ylmethyl)urea (14k)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14k. 

The title compound 14k was obtained as a white solid (45 mg, 41%): 1H NMR (400 MHz, 

d6-DMSO) δ 9.72 (s, 1H), 8.84 (d, J = 1.4 Hz, 1H), 8.78 (d, J = 4.8 Hz, 1H), 8.55 (d, J = 1.9 

Hz, 1H), 8.52 (d, J = 9.1 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 7.95 (dd, J = 8.0, 5.6 Hz, 1H), 

7.63 (dd, J = 9.1, 2.0 Hz, 1H), 7.42 (t, J = 5.9 Hz, 1H), 4.52 (d, J = 5.8 Hz, 2H); 13C NMR 

(100 MHz, d6-DMSO) δ 155.2, 153.4, 143.0, 142.3, 142.0, 141.9, 141.8, 139.6, 126.3, 

123.5, 119.3, 105.6, 40.3; HPLC (method 2) 99%, tR 3.67 min; MS (ESI) m/z 286 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(pyridin-4-ylmethyl)urea (14l)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14l. The title 

compound 14l was obtained as a white solid (51 mg, 44%): 1H NMR (400 MHz, d6-DMSO) 

δ 9.87 (s, 1H), 8.83 (d, J = 6.6 Hz, 2H), 8.58–8.49 (m, 2H), 7.91 (d, J = 6.5 Hz, 2H), 7.65 

(dd, J = 9.1, 2.0 Hz, 1H), 7.56 (t, J = 5.9 Hz, 1H), 4.61 (d, J = 5.8 Hz, 2H); 13C NMR (100 

MHz, d6-DMSO) δ 160.0, 155.2, 153.4, 142.5 (two carbons), 142.3, 141.9, 124.4 (two 

carbons), 123.5, 119.3, 105.7, 42.6; HPLC (method 2) 97%, tR 3.19 min; MS (ESI) m/z 286 

[M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-(dimethylamino)-benzyl)urea (14m)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 

14m. The title compound 14m was obtained as a white solid (31 mg, 36%): 1H NMR (400 

MHz, d6-DMSO) δ 9.39 (s, 1H), 8.54 (d, J = 1.9 Hz, 1H), 8.51 (d, J = 9.1 Hz, 1H), 7.61 (dd, 

J = 9.1, 2.0 Hz, 1H), 7.33 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.02 (t, J = 5.1 Hz, 

1H), 4.29 (d, J = 5.1 Hz, 2H), 3.02 (s, 6H); HPLC (method 2) 97%, tR 4.74 min; MS (ESI) 

m/z 328 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-methoxybenzyl)urea (14n)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14n. The title 

compound 14n was obtained as a white solid (61 mg, 53%): 1H NMR (400 MHz, d6-

DMSO) δ 9.22 (s, 1H), 8.54 (d, J = 1.8 Hz, 1H), 8.51 (d, J = 9.1 Hz, 1H), 7.60 (dd, J = 9.1, 

2.0 Hz, 1H), 7.30–7.21 (m, 2H), 6.93–6.86 (m, 2H), 6.83 (t, J = 5.8 Hz, 1H), 4.26 (d, J = 5.8 

Hz, 2H), 3.73 (s, 3H); 13C NMR (100 MHz, d6-DMSO) δ 158.2, 154.8, 153.3, 142.3, 142.1, 

131.8, 128.6 (two carbons), 123.5, 119.2, 113.7 (two carbons), 105.3, 55.1, 42.3; HPLC 

(method 1) 99%, tR 3.77 min; MS (ESI) m/z 315 [M + H]+.
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1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-nitrobenzyl)urea (14o)—The procedure used 

for preparation of compound 4 was followed for synthesis of compound 14o. The title 

compound 14o was obtained as a white solid (26 mg, 35%): 1H NMR (400 MHz, d6-

DMSO) δ 9.43 (s, 1H), 8.54 (d, J = 1.9 Hz, 1H), 8.52 (d, J = 9.1 Hz, 1H), 8.26–8.16 (m, 

2H), 7.63 (dd, J = 9.1, 2.1 Hz, 1H), 7.61–7.54 (m, 2H), 7.08 (t, J = 6.0 Hz, 1H), 4.48 (d, J = 

6.0 Hz, 2H); HPLC (method 1) 97%, tR 3.59 min; MS (ESI) m/z 330 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-(methylsulfonyl)-benzyl)urea (14p)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14p. 

The title compound 14p was obtained as a white solid (37 mg, 39%): 1H NMR (400 MHz, 

d6-DMSO) δ 9.40 (s, 1H), 8.55 (d, J = 2.0 Hz, 1H), 8.52 (d, J = 9.1 Hz, 1H), 7.93–7.87 (m, 

2H), 7.63 (dd, J = 9.1, 2.0 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.06 (t, J = 6.0 Hz, 1H), 4.46 

(d, J = 6.0 Hz, 2H), 3.19 (s, 3H); 13C NMR (100 MHz, d6-DMSO) δ 154.9, 153.4, 146.4, 

142.3, 141.9, 139.2, 127.8 (two carbons), 127.1 (two carbons), 123.5, 119.3, 105.6, 43.6, 

42.5; HPLC (method 1) 100%, tR 1.92 min; MS (ESI) m/z 363 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-cyanobenzyl)urea (14q)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14q. The title 

compound 14q was obtained as a white solid (34 mg, 41%): 1H NMR (400 MHz, d6-

DMSO) δ 9.40 (s, 1H), 8.54 (d, J = 2.0 Hz, 1H), 8.52 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.1 

Hz, 2H), 7.62 (dd, J = 9.1, 2.0 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.05 (t, J = 6.0 Hz, 1H), 

4.43 (d, J = 6.0 Hz, 2H); HPLC (method 1) 97%, tR 4.86 min; MS (ESI) m/z 310 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-(trifluoromethyl)-benzyl)urea (14r)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14r. 

The title compound 14r was obtained as a white solid (52 mg, 47%): 1H NMR (400 MHz, 

d6-DMSO) δ 9.38 (s, 1H), 8.55 (d, J = 1.9 Hz, 1H), 8.52 (d, J = 9.0 Hz, 1H), 7.70 (d, J = 8.1 

Hz, 2H), 7.62 (dd, J = 9.1, 2.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 6.0 Hz, 1H), 

4.44 (d, J = 6.0 Hz, 2H); 13C NMR (100 MHz, d6-DMSO) δ 155.0, 153.4, 145.1 (q, J = 1.3 

Hz), 142.3, 142.0, 127.7, 127.5 (q, J = 31.6 Hz), 125.2 (q, J = 3.8 Hz),124.4 (q, J = 271.9 

Hz), 123.5, 119.3, 105.6, 42.5; HPLC (method 1) 98%, tR 4.92 min; MS (ESI) m/z 353 [M + 

H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(4-fluorobenzyl)urea (14s)—The procedure 

used for preparation of compound 4 was followed for synthesis of compound 14s. The title 

compound 14s was obtained as a white solid (41 mg, 48%): 1H NMR (400 MHz, d6-DMSO) 

δ 9.29 (s, 1H), 8.54 (d, J = 1.8 Hz, 1H), 8.51 (d, J = 9.1 Hz, 1H), 7.61 (dd, J = 9.1, 2.0 Hz, 

1H), 7.43–7.31 (m, 2H), 7.23–7.10 (m, 2H), 6.93 (t, J = 6.0 Hz, 1H), 4.32 (d, J = 5.9 Hz, 

2H); 13C NMR (100 MHz, d6-DMSO) δ 161.15 (d, J = 242.1 Hz), 154.85, 153.33, 142.28, 

142.01, 136.22 (d, J = 3.0 Hz), 129.15 (d, J = 8.2 Hz, two carbons), 123.46, 119.23, 115.01 

(d, J = 21.2 Hz, two carbons). 105.44, 42.12; HPLC (method 1) 99%, tR 4.20 min; MS (ESI) 

m/z 303 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(trifluoromethyl)-benzyl)urea (14t)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14t. 
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The title compound 14t was obtained as a white solid (32 mg, 41%): 1H NMR (400 MHz, 

d6-DMSO) δ 9.43 (s, 1H), 8.55 (d, J = 1.9 Hz, 1H), 8.52 (d, J = 9.1 Hz, 1H), 7.73 (d, J = 7.7 

Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.65–7.58 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 6.0 

Hz, 1H), 4.54 (d, J = 5.8 Hz, 2H); HPLC (method 1) 99%, tR 4.76 min; MS (ESI) m/z 353 

[M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-oxo-2-phenylethyl)-urea (14u)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14u. 

The title compound 14u was obtained as a white solid (42 mg, 45%): 1H NMR (400 MHz, 

d4-MeOH) δ 8.51 (d, J = 1.9 Hz, 1H), 8.46 (d, J = 9.1 Hz, 1H), 8.05 (dt, J = 8.5, 1.7 Hz, 

2H), 7.68–7.63 (m, 1H), 7.55 (ddd, J = 9.2, 5.1, 1.9 Hz, 3H), 4.80 (s, 2H); 13C NMR (100 

MHz, d4-MeOH) δ 196.7, 157.5, 155.4, 144.1, 143.0, 136.3, 134.9, 130.0 (two carbons), 

129.0 (two carbons), 124.6, 120.7, 107.0, 47.9; HPLC (method 1) 97%, tR 3.68 min; MS 

(ESI) m/z 313 [M + H]+; HRMS calcd. for C15H12N4O2S + H: 313.0759; found: 313.0747 

[M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(3-(4-fluorophenyl)-propyl)urea (14v)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 14v. 

The title compound 14v was obtained as a white solid (42 mg, 45%): 1H NMR (400 MHz, 

d6-DMSO) δ 9.15 (s, 1H), 8.52 (d, J = 1.9 Hz, 1H), 8.50 (d, J = 9.1 Hz, 1H), 7.60 (dd, J = 

9.1, 2.0 Hz, 1H), 7.29–7.22 (m, 2H), 7.14–7.05 (m, 2H), 6.49 (t, J = 5.6 Hz, 1H), 3.18–3.09 

(m, 2H), 2.65–2.57 (m, 2H), 1.80–1.69 (m, 2H); 13C NMR (100 MHz, d6-DMSO) δ 160.6 

(d, J = 241.0 Hz), 154.8, 153.2, 142.3, 142.2, 137.7 (d, J = 3.1 Hz), 130.0 (d, J = 7.9 Hz, two 

carbons), 123.4, 119.2, 114.9 (d, J = 20.9 Hz, two carbons), 105.2, 38.6, 31.6, 31.4; HPLC 

(method 1) 99%, tR 5.02 min; MS (ESI) m/z 331 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(piperidin-4-yl)ethyl)-urea (15a)—The 

procedure used for preparation of compound 4 was followed for synthesis of Boc-protected 

compound 15a, which was purified by flash column chromatography on silica gel (0–10% 

MeOH/DCM gradient). To a solution of Boc-protected compound 15a (70 mg, 0.172 mmol) 

in DCM (5 mL) was added TFA (0.5 mL). After being stirred overnight, the resulting 

mixture was purified by preparative HPLC (10–100% methanol/0.1% TFA in H2O) to afford 

the title compound 15a as a mono-TFA salt (39 mg, 37% in two steps): 1H NMR (400 MHz, 

d4-MeOH) δ 8.45 (d, J = 2.0 Hz, 1H), 8.43 (d, J = 9.2 Hz, 1H), 7.53 (dd, J = 9.1, 2.0 Hz, 

1H), 3.42–3.34 (m, 2H), 3.33–3.27 (m, 2H), 2.97 (td, J = 12.8, 2.6 Hz, 2H), 2.06–1.97 (m, 

2H), 1.79–1.66 (m, 1H), 1.56 (q, J = 6.9 Hz, 2H), 1.48–1.34 (m, 2H); 13C NMR (100 MHz, 

d4-MeOH) δ 157.6, 155.3, 144.1, 143.2, 124.5, 120.7, 106.8, 45.3 (two carbons), 37.9, 37.4, 

32.5, 29.9 (two carbons); HPLC (method 2) 99%, tR 3.13 min; MS (ESI) m/z 306 [M + H]+.

1-(2-(cis-4-Aminocyclohexyl)ethyl)-3-(benzo[d][1,2,3]-thiadiazol-6-yl)urea (15b)
—The procedure used for preparation of compound 15a was followed for synthesis of 

compound 15b. The title compound 15b was obtained as a mono-TFA salt (42 mg, 41% in 

two steps): 1H NMR (400 MHz, d4-MeOH) δ 8.45 (d, J = 1.9 Hz, 1H), 8.43 (d, J = 9.1 Hz, 

1H), 7.53 (dd, J = 9.1, 2.0 Hz, 1H), 3.29–3.23 (m, 3H), 1.87–1.63 (m, 7H), 1.63–1.42 (m, 

4H); 13C NMR (100 MHz, d4-MeOH) δ 157.6, 155.3, 144.1, 143.2, 124.5, 120.7, 106.8, 
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50.1, 38.7, 34.8, 32.6, 27.9 (two carbons), 27.8(two carbons); HPLC (method 2) 98%, tR 

3.56 min; MS (ESI) m/z 320 [M + H]+.

1-(2-(trans-4-Aminocyclohexyl)ethyl)-3-(benzo[d][1,2,3]-thiadiazol-6-yl)urea 
(15c)—The procedure used for preparation of compound 15a was followed for synthesis of 

compound 15c. The title compound 15c was obtained as a mono-TFA salt (49 mg, 47% in 

two steps): 1H NMR (400 MHz, d4-MeOH) δ 8.45 (d, J = 1.9 Hz, 1H), 8.43 (d, J = 9.1 Hz, 

1H), 7.52 (dd, J = 9.1, 2.0 Hz, 1H), 3.28 (t, J = 7.1 Hz, 2H), 3.09–2.98 (m, 1H), 2.10–2.00 

(m, 2H), 1.98–1.90 (m, 2H), 1.53–1.33 (m, 5H), 1.17–1.03 (m, 2H); 13C NMR (100 MHz, 

d4-MeOH) δ 157.6, 155.3, 144.1, 143.2, 124.5, 120.7, 106.7, 51.6, 38.5, 37.8, 35.1, 31.8 

(two carbons), 31.7 (two carbons); HPLC (method 2) 98%, tR 3.43 min; MS (ESI) m/z 320 

[M + H]+.

1-(3-(trans-4-Aminocyclohexyl)propyl)-3-(benzo[d][1,2,3]-thiadiazol-6-yl)urea 
(15d)—The procedure used for preparation of compound 15a was followed for synthesis of 

compound 15d. The title compound 15d was obtained as a mono-TFA salt (29 mg, 35% in 

two steps): 1H NMR (400 MHz, d4-MeOH) δ 8.48–8.41 (m, 2H), 7.52 (dd, J = 9.1, 2.0 Hz, 

1H), 3.22 (t, J = 7.1 Hz, 2H), 3.02 (tt, J = 11.9, 3.9 Hz, 1H), 2.08–1.97 (m, 2H), 1.97–1.86 

(m, 2H), 1.62–1.53 (m, 2H), 1.44–1.25 (m, 5H), 1.13–1.00 (m, 2H); 13C NMR (100 MHz, 

d4-MeOH) δ 157.6, 155.3, 144.1, 143.2, 124.5, 120.7, 106.8, 51.7, 40.9, 37.3, 34.7, 32.0 

(two carbons), 31.8 (two carbons), 28.5; HPLC (method 2) 98%, tR 3.76 min; MS (ESI) m/z 

334 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(3-(piperidin-4-yl)-propyl)urea (15e)—The 

procedure used for preparation of compound 15a was followed for synthesis of compound 

15e. The title compound 15e was obtained as a mono-TFA salt (49 mg, 45% in two 

steps): 1H NMR (400 MHz, d4-MeOH) δ 8.43 (d, J = 2.0 Hz, 1H), 8.40 (d, J = 9.1 Hz, 1H), 

7.52 (dd, J = 9.1, 2.0 Hz, 1H), 3.41–3.32 (m, 2H), 3.22 (t, J = 7.0 Hz, 2H), 2.95 (td, J = 12.8, 

2.5 Hz, 2H), 1.97–1.89 (m, 2H), 1.66–1.53 (m, 3H), 1.43–1.29 (m, 4H); 13C NMR (100 

MHz, d4-MeOH) δ 157.6, 155.2, 144.0, 143.2, 124.4, 120.7, 106.7, 45.3 (two carbons), 40.7, 

34.5, 34.1, 30.0 (two carbons), 27.9; HPLC (method 2) 99%, tR 3.32 min; MS (ESI) m/z 320 

[M + H]+.

1-(2-Amino-2-phenylethyl)-3-(benzo[d][1,2,3]thiadiazol-6-yl)urea (16)—The 

procedure used for preparation of compound 15a was followed for synthesis of compound 

16. The title compound 16 was obtained as a mono-TFA salt (48 mg, 42% in two steps): 1H 

NMR (400 MHz, d4-MeOH) δ 8.51–8.47 (m, 1H), 8.45–8.39 (m, 1H), 7.54 (dd, J = 9.1, 2.0 

Hz, 1H), 7.52–7.41 (m, 5H), 4.53 (dd, J = 7.9, 5.5 Hz, 1H), 3.79 (dd, J = 14.5, 8.0 Hz, 1H), 

3.67 (dd, J = 14.5, 5.5 Hz, 1H); 13C NMR (100 MHz, d4-MeOH) δ 157.8, 155.4, 143.9, 

142.8, 136.3, 130.5, 130.4 (two carbons), 128.3 (two carbons), 124.5, 120.8, 107.1, 56.8, 

44.7; HPLC (method 2) 99%, tR 3.49 min; MS (ESI) m/z 314 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-hydroxy-2-phenylethyl)urea (17)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 17. 

The title compound 17 was obtained as a white solid (52 mg, 50%): 1H NMR (400 MHz, d4-
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MeOH) δ 8.44–8.41 (m, 1H), 8.41–8.36 (m, 1H), 7.45 (dd, J = 9.0, 2.0 Hz, 1H), 7.43–7.39 

(m, 2H), 7.37–7.31 (m, 2H), 7.29–7.23 (m, 1H), 4.80 (dd, J = 7.9, 4.5 Hz, 1H), 3.56 (dd, J = 

13.7, 4.5 Hz, 1H), 3.36 (dd, J = 13.7, 7.9 Hz, 1H); 13C NMR (100 MHz, d4-MeOH) δ 157.5, 

155.2, 144.0, 143.9, 143.0, 129.4 (two carbons), 128.6, 127.1 (two carbons), 124.4, 120.6, 

106.8, 73.9, 48.3; HPLC (method 1) 99%, tR 3.27 min; MS (ESI) m/z 315 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2,2-difluoro-2-phenylethyl)urea (18)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 18. 

The title compound 18 was obtained as a white solid (42 mg, 38%): 1H NMR (400 MHz, d6-

DMSO) δ 9.26 (s, 1H), 8.55–8.48 (m, 2H), 7.63–7.55 (m, 3H), 7.53–7.47 (m, 3H), 6.81 (t, J 

= 6.3 Hz, 1H), 3.95 (td, J = 15.0, 6.3 Hz, 2H); HPLC (method 1) 98%, tR 4.15 min; MS 

(ESI) m/z 335 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(4-fluorophenyl)-2-hydroxyethyl)urea 
(19)—To a stirred solution of 4-fluorobenzalde-hyde (1.24 g, 10.0 mmol) and nitromethane 

(2.14 mL, 40.0 mmol) in ethanol (40 mL) was added 4.2 mL of 10% aq NaOH at 0 °C. The 

resulting mixture was stirred for 2 h at 0 °C and quenched with acetic acid (0.61 mL, 10.5 

mmol). After addition of 30 mL of saturated aq NaHCO3 and extraction with ethyl acetate 

(100 mL × 3), the combined organic phase was dried with sodium sulfate, filtered, and 

concentrated to afford the desired crude product 1-(4-fluorophenyl)-2-nitroethanol. A stirred 

suspension of the intermediate and palladium carbon in methanol (100 mL) was treated with 

hydrogen at 1 atm overnight at rt. The product 2-amino-1-(4-fluorophenyl)ethanol was 

obtained after filtration and concentration. The procedure used for preparation of compound 

4 was followed for synthesis of compound 19 from 2-amino-1-(4-fluorophenyl)ethanol. The 

title compound 19 was obtained as a white solid (47 mg, 49%): 1H NMR (400 MHz, d4-

MeOH) δ 8.46 (dd, J = 2.0, 0.5 Hz, 1H), 8.43 (dd, J = 9.0, 0.5 Hz, 1H), 7.49 (dd, J = 9.0, 2.0 

Hz, 1H), 7.46–7.40 (m, 2H), 7.12–7.03 (m, 2H), 4.80 (dd, J = 7.7, 4.5 Hz, 1H), 3.53 (dd, J = 

13.7, 4.5 Hz, 1H), 3.35 (dd, J = 13.8, 7.8 Hz, 1H); HPLC (method 1) 98%, tR 3.59 min; MS 

(ESI) m/z 333 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(2-fluorophenyl)-2-hydroxyethyl)urea 
(20)—The procedure used for preparation of compound 19 was followed for synthesis of 

compound 20. The title compound 20 was obtained as a white solid (57 mg, 54%): 1H NMR 

(400 MHz, d4-MeOH) δ 8.45–8.37 (m, 2H), 7.58 (td, J = 7.5, 1.6 Hz, 1H), 7.46 (dd, J = 9.0, 

2.0 Hz, 1H), 7.29 (tdd, J = 7.3, 5.3, 1.8 Hz, 1H), 7.19 (td, J = 7.5, 0.8 Hz, 1H), 7.06 (ddd, J 

= 10.5, 8.2, 0.9 Hz, 1H), 5.13 (dd, J = 7.3, 4.5 Hz, 1H), 3.60 (dd, J = 13.7, 4.5 Hz, 1H), 3.44 

(dd, J = 13.7, 7.4 Hz, 1H); 13C NMR (100 MHz, d4-MeOH) δ 159.9 (d, J = 244.4 Hz), 

156.14, 153.88, 142.65, 141.60, 129.4 (d, J = 13.7 Hz), 128.9 (d, J = 8.3 Hz), 127.5 (d, J = 

4.4 Hz), 124.0 (d, J = 3.5 Hz), 123.1, 119.2, 114.7 (d, J = 22.0 Hz), 105.4, 66.4, 45.6; HPLC 

(method 1) 100%, tR 3.26 min; MS (ESI) m/z 333 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexyl-2-hydroxyethyl)urea (21)—
The procedure used for preparation of compound 19 was followed for synthesis of 

compound 21. The title compound 21 was obtained as a white solid (57 mg, 48%): 1H NMR 

(400 MHz, d4-MeOH) δ 8.46 (dd, J = 2.0, 0.5 Hz, 1H), 8.42 (dd, J = 9.1, 0.5 Hz, 1H), 7.49 
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(dd, J = 9.1, 2.0 Hz, 1H), 3.51 (dd, J = 13.6, 3.4 Hz, 1H), 3.41 (ddd, J = 8.2, 6.4, 3.4 Hz, 

1H), 3.09 (dd, J = 13.6, 8.2 Hz, 1H), 1.97–1.87 (m, 1H), 1.84–1.63 (m, 4H), 1.47–1.35 (m, 

1H), 1.35–0.99 (m, 5H); 13C NMR (100 MHz, d4-MeOH) δ 157.7, 155.3, 144.1, 143.1, 

124.5, 120.6, 106.7, 76.0, 44.5, 43.2, 30.3, 29.4, 27.6, 27.4, 27.2; HPLC (method 1) 100%, 

tR 4.51 min; MS (ESI) m/z 321 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexyl-2-oxoethyl)urea (22)—To a 

solution of compound 21 (46 mg, 0.143 mmol) in 2.2 mL of DCM/DMSO (2:1) were added 

triethylamine (0.10 mL, 0.72 mmol) and Py·SO3 (92 mg, 0.574 mmol) at rt. The resulting 

mixture was stirred for 1 h at rt, quenched with 1.0 mL of water, concentrated, and purified 

by preparative HPLC (50–100% methanol/0.1% TFA in H2O) to afford the title compound 

23 as a white solid (35 mg, 78%): 1H NMR (400 MHz, d6-DMSO) δ 9.50 (s, 1H), 8.54–8.49 

(m, 2H), 7.59 (dd, J = 9.2, 2.0 Hz, 1H), 6.60 (t, J = 5.2 Hz, 1H), 4.12 (d, J = 5.2 Hz, 2H), 

2.49–2.42 (m, 1H), 1.86–1.55 (m, 5H), 1.33–1.09 (m, 5H); HPLC (method 1) 98%, tR 4.38 

min; MS (ESI) m/z 319 [M + H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-(4-fluorophenyl)-2-oxoethyl)urea (23)—
The procedure used for preparation of compound 22 was followed for synthesis of 

compound 23. The title compound 23 was obtained as a white solid (36 mg, 76%): 1H NMR 

(400 MHz, d6-DMSO) δ 9.60 (s, 1H), 8.56–8.51 (m, 2H), 8.17–8.06 (m, 2H), 7.63 (dd, J = 

9.1, 2.0 Hz, 1H), 7.44–7.34 (m, 2H), 6.78 (t, J = 5.2 Hz, 1H), 4.72 (d, J = 5.2 Hz, 2H); 13C 

NMR (100 MHz, d6-DMSO) δ 194.5, 165.2 (d, J = 252.2 Hz), 154.8, 153.4, 142.3, 141.9, 

131.6 (d, J = 2.9 Hz), 130.9 (d, J = 9.6 Hz, two carbons), 123.6, 119.1, 115.9 (d, J = 21.9 

Hz, two carbons), 105.4, 46.8; HPLC (method 1) 98%, tR 3.82 min; MS (ESI) m/z 331 [M + 

H]+.

1-(Benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-oxo-2-(piperidin-1-yl)ethyl)urea (24)—The 

procedure used for preparation of compound 4 was followed for synthesis of compound 24. 

The title compound 24 was obtained as a white solid (57 mg, 51%): 1H NMR (400 MHz, d6-

DMSO) δ 9.60 (s, 1H), 8.57–8.46 (m, 2H), 7.60 (dd, J = 9.2, 2.0 Hz, 1H), 6.60 (t, J = 4.5 

Hz, 1H), 4.01 (d, J = 4.5 Hz, 2H), 3.53–3.45 (m, 2H), 3.38–3.31 (m, 2H), 1.63–1.48 (m, 

4H), 1.48–1.39 (m, 2H). 13C NMR (100 MHz, d6-DMSO) δ 166.6, 154.6, 153.3, 142.3, 

142.0, 123.6, 119.0, 105.2, 44.8, 42.3, 41.2, 25.8, 25.2, 23.9. HPLC (method 1) 98%, tR 3.26 

min; MS (ESI) m/z 320 [M + H]+; HRMS calcd. for C14H17N5O2S + H: 320.1181; found: 

320.1181 [M+H]+.

Methyltransferase Activity Assays

Methyltransferase activity assays were performed by monitoring the incorporation of 

tritium-labeled methyl group to biotinylated peptide substrates using scintillation proximity 

assay (SPA) for PRMT3, SETD7, G9a, GLP, SETDB1, SETD8, SUV420H1, SUV420H2, 

SUV39H2, PRC2 trimeric complex (EZH2:EED:SUZ12), MLL1 tetrameric complex 

(MLL:WDR5:RbBP5:ASH2L), PRMT5–MEP50 complex, and SMYD2. Assay components 

for all assays are summarized in Table S1 (Supporting Information). The reaction buffer for 

SMYD2 and SMYD3 was 50 mM Tris, pH 9.0, 5 mM DTT, and 0.01% TritonX-100, that 

for G9a, GLP, and SUV39H2 was 25 mM potassium phosphate, pH 8.0, 1 mM EDTA, 2 
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mM MgCl2, and 0.01% Triton X-100, and that for the other HMTs was 20 mM Tris, pH 8.0, 

5 mM DTT, and 0.01% TritonX-100. To stop the enzymatic reactions, 10 μL of 7.5 M 

guanidine hydrochloride was added, followed by 180 μL of buffer, and the resulting reaction 

mixture was mixed and transferred to a 96-well FlashPlate (catalog no. SMP103, Perkin-

Elmer, www.perkinelmer.com). After mixing, the reaction mixtures were incubated, and the 

counts per minute (cpm) were measured using a Topcount plate reader (Perkin-Elmer). The 

cpm values in the absence of compound for each data set were defined as 100% activity. In 

the absence of the enzyme, the cpm values in each data set were defined as background 

(0%). IC50 values were determined using compound concentrations ranging from 100 nM to 

100 μM. The IC50 values were determined using SigmaPlot software.

For DNMT1, the assay was performed as described above using hemimethylated dsDNA as 

a substrate. The dsDNA substrate was prepared by annealing two complementary strands 

(biotinylated forward strand, B-GAGCCCGTAAGCCCGTTCAGGTCG; reverse strand, 

CGACCTGAACGGGCTTACGGGCTC) synthesized by Eurofins MWG Operon. The 

reaction buffer was 20 mM Tris–HCl, pH 8.0, 5 mM DTT, and 0.01% Triton X-100.

Methyltransferase activity assays for DOT1L and SMYD3 were performed using filter 

plates (catalog no. MSFBN6B10, Millipore, www.millipore.com). Reaction mixtures in 20 

mM Tris–HCl, pH 8.0, 5 mM DTT, 2 mM MgCl2, and 0.01% Triton X-100 were incubated 

at room temperature for 1 h, 100 μL 10% TCA was added, and the resulting reaction mixture 

was mixed and transferred to a filter plate. The plates were centrifuged at 2000 rpm for 2 

min followed by two additional 10% TCA washes and one ethanol wash (180 μL) followed 

by centrifugation. The plates were dried, 100 μL of MicroO was added, and the plates were 

centrifuged. A 70 μL volume of MicroO was added, and the cpm values were measured 

using a Topcount plate reader.

Cocrystallization Protocols and Structure Refinement

PRMT3 was incubated at 1.1 mg/mL overnight with compound 14u at a 1:30 molar ratio 

(PRMT3:compound 14u). Following incubation, protein was concentrated to 3 mg/mL and 

crystallized using the sitting drop diffusion method at 20 °C by mixing 1 μL of the protein 

solution with 1 μL of the reservoir solution containing 25% PEG 3350, 0.2 M LiSO4, and 

0.1 M Hepes, pH 7.5. Prior to freezing, the crystals were soaked for 10 min in the same 

buffer with 10% glycerol.

Data Collection and Processing—The native data set was collected on APS beamline 

19-ID at 100 K. Program HKL2000 was used for data processing and scaling.60

Structure Determination and Refinement—The structure of PRMT3 in complex with 

compound 14u was determined by molecular replacement using MOLREP.61 PDB entry 

2FYT was used as a search template. The graphic program Coot62 was used for manual 

model refinement and visualization. Refmac563 was used to refine the model. MolProbity64 

was used to validate the refined structure; 98.0% of the residues are the favored regions of 

the Ramachandran plot, and none of them are in the disallowed regions. The structure has 

been deposited in the RCSB with PDB code 4HSG.
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Modeling

Monte Carlo energy minimization simulations were run in triplicate with ICM version 

3.7-2c (Molsoft, San Diego) using the “ssearch” command. Briefly, the conformational 

space accessible to K392 was sampled in the internal coordinate space, with global 

conformational sampling steps followed by local energy minimization and calculation of the 

complete energy potential, including surface and advanced electrostatics terms.65 

Compound 14u and residues surrounding K392 were kept static.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

PRMTs protein arginine methyltransferases

PRMT3 protein arginine methyltransferase 3

rpS2 40S ribosomal protein S2

SAR structure–activity relationship

HMTs histone methyl-transferases

PMTs protein methyltransferases

PKMTs protein lysine methyltransferases

GAR glycine- and arginine-rich

PGM proline-, glycine-, methionine-, and arginine-rich

PABPN1 nuclear poly(A)-binding protein

MOA mechanism of action

LHS left-hand side

RHS right-hand side

SAM S-adenosylmethionine

DNMT1 DNA methyltransferase 1
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Figure 1. 
(A) Structure of PRMT3 inhibitors 1 and 2 and three regions explored for SAR. (B) X-ray 

crystal structure of the inhibitor 1–PRMT3 complex (PDB code 3SMQ). Key interactions 

include (1) a hydrogen bond between the 2-nitrogen of the benzothiadiazole and T466, (2) 

two hydrogen bonds between the two amino groups of the middle urea moiety and E422, (3) 

a hydrogen bond between the oxygen of the urea moiety and R396, and (4) hydrophobic 

interactions between the cyclohexenylethyl group and a nonpolar surface.
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Figure 2. 
Compound 14u was selective for PRMT3 over other PRMTs, PKMTs, and DNMT1. The 

effects of compound 14u on the activity of the following methyltransferases were assessed: 

(A) PRMT3 (●, IC50 = 0.48 ± 0.01 μM), G9a (○, IC50 = 20 ± 1 μM), GLP (▼, IC50 = 25 ± 

8 μM), and SUV39H2 (△, IC50 = 22 ± 1 μM); (B) SETD7 (●), PRC2 complex (○), SETD8 

(▼), SETDB1 (△), SUV420H1 (■), SUV420H2 (□), MLL1 complex (◇), SMYD3 (▲), 

SMYD2 (▽), DOT1L (□), PRMT5–MEP50 complex (◆), and DNMT1 (⬢).
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Figure 3. 
X-ray crystal structure of PRMT3 in complex with the inhibitor 14u (PDB code 4HSG). (A) 

Compound 14u binds at the allosteric site of PRMT3 and contacts both subunits of the 

homodimer, as was observed with compound 1.57 (B) Critical interactions include hydrogen 

bonds with T466, E422, and R396. The letter preceding the residue number indicates the 

PRMT3 chain (A or B).
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Figure 4. 
Monte Carlo energy minimization identifies a low-energy conformation of K392, which 

interacts with the carbonyl oxygen of compound 14u via a hydrogen bond. Three 

independent energy minimization simulations (conformational samplings 1–3) converge 

toward similar low-energy conformations for K392. Conformational states placing the ε-

nitrogen of K392 within hydrogen-bonding distance of 14u are listed in bold. The four 

lowest energy states from sampling 1 (A–D) and the fourth state from sampling 2 (E) are 

shown.
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Scheme 1. 
Synthesis of Compounds 3–7a

aReagents and conditions: (a) CDI, THF, 2-cyclohexylethylamine, rt, 41–88%.
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Scheme 2. 
Synthesis of Compounds for Exploring the Middle Urea Moietya

aReagents and conditions: (a) N2H4·H2O, EtOH, reflux; (b) H2O2, rt, 87% over two steps; 

(c) KNO2/H2SO4, 0–10 °C, 62%; (d) SnCl2/HCl, 65 °C, 5 min, 61%; (e) 3,4-

diethoxycyclobut-3-ene-1,2-dione, Zn(OTf)2, EtOH, rt, 92%; (f) 2-cyclohexylethylamine or 

2-amino-1-phenylethanone, i-PrOH, 120 °C, microwave, 78–85%; (g) diphenyl 

cyanocarbonimidate, i-PrOH, 100 °C, microwave; (h) 2-cyclohexylethylamine, i-PrOH, 100 

°C, microwave, 38% over two steps; (i) BrCN, THF, 40 °C; (j) 3-

cyclohexylpropanehydrazide, HCl, i-PrOH, 160 °C, microwave, 32% over two steps.
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Scheme 3. 
Synthesis of the Compounds Outlined in Table 3a

aReagents and conditions: (a) CDI, DMF, various amines, rt, 35–55%; (b) TFA, DCM, rt, 

100%.
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Scheme 4. 
Synthesis of the Compounds Outlined in Table 4a

aReagents and conditions: (a) CDI, DMF, various amines, rt, 35–55%; (b) TFA, DCM, rt, 

100%; (c) PySO3, Et3N, DCM/DMSO, rt, 76–78%.
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Table 1

SAR of the LHS Bicyclic Aromatic Moiety

Compound R (LHS moiety) PRMT3 IC50 (μM)a

2 1.0 ± 0.2

3 >100b

4 >100

5 >100

6 >100

7 >100

a
IC50 determination experiments were performed in triplicate.

b
The IC50 value was previously reported.57
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Table 2

Bioisosteres of the Middle Urea Moiety

Compound Structure PRMT3 IC50 (μM)a

2 1.0 ± 0.2

10 >100

11 >100

12 >100

13 >100

a
IC50 determination experiments were performed in triplicate.
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Table 3

SAR of the RHS Moiety: Part Ia

Compound R (RHS Moiety) PRMT3 IC50 (μM)

2 1.0 ± 0.2

1 2.4 ± 0.4

14a 3.6 ± 0.5

14b 5.2 ± 1

14c >10

14d 7.2 ± 0.6

14e >10

14f >50

14g >15
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Compound R (RHS Moiety) PRMT3 IC50 (μM)

14h >10

14i >25

14j >15

14k >15

141 >10

14m >15

14n >10

14o 0.30 ± 0.08

14p 0.85 ± 0.2
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Compound R (RHS Moiety) PRMT3 IC50 (μM)

14q 1.8 ± 0.3

14r 3.1 ± 0.6

14s 4.0 ± 1

14t >25

14u 0.48 ± 0.01

14v 2.2 ± 0.4

15a 2.7 ± 0.6

15b 3.6 ± 0.5

15c >10
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Compound R (RHS Moiety) PRMT3 IC50 (μM)

15d 5.3 ± 0.7

15e 3.3 ± 0.7

a
IC50 determination experiments were performed in triplicate.
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Table 4

SAR of the RHS Moiety: Part IIa

Compound R (RHS Moiety) PRMT3 IC50 (μM)

14u 0.48 ± 0.01

(±)-16 5.9 ± 0.5

(±)-17 1.9 ± 0.2

18 5.0 ± 0.2

(±)-19 4.4 ± 0.4

(±)-20 3.3 ± 0.4
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Compound R (RHS Moiety) PRMT3 IC50 (μM)

(±)-21 0.49 ± 0.08

22 0.84 ± 0.1

23 0.36 ± 0.07

24 0.23 ± 0.03

a
IC50 determination experiments were performed in triplicate.
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