
 
 

 
 
 

University of Westminster Eprints 
http://eprints.wmin.ac.uk 
 
 
Forecasts, scenarios, visions, backcasts and roadmaps to the 
hydrogen economy: a review of the hydrogen futures 
literature. 
 
William McDowall 
Malcolm Eames 
 
Policy Studies Institute 

 
 
 
This is an electronic version of an article published in Energy Policy, 34 (11). 
pp. 1236-1250, July 2006. The definitive version published in Energy Policy is 
available online at: 
 
http://www.elsevier.com/locate/enpol 
 
 
 
The Eprints service at the University of Westminster aims to make the research 
output of the University available to a wider audience.  Copyright and Moral Rights 
remain with the authors and/or copyright owners. 
Users are permitted to download and/or print one copy for non-commercial private 
study or research.  Further distribution and any use of material from within this 
archive for profit-making enterprises or for commercial gain is strictly forbidden.    
 
 
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of the University of Westminster Eprints 
(http://eprints.wmin.ac.uk). 
 
 
In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk. 

wattsn
top stamp

wattsn
Middle

wattsn
Bottom



 

1 

Title: Forecasts, Scenarios, Visions, Backcasts and Roadmaps to the Hydrogen 
Economy: A Review of the Hydrogen Futures Literature  
 
Authors: William McDowall ( w.mcdowall@psi.org.uk) & Dr Malcolm Eames 
(m.eames@psi.org.uk) 
 
Affiliations: Policy Studies Institute, 100 Park Village East, London, NW1 3SR 
United Kingdom, www.psi.org.uk, +44 (20) 7468 0468. 
 
 
Abstract:  
Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty 
in areas with long planning horizons, such as energy policy, and research into the 
future of hydrogen energy has been no exception. Such studies can play an 
important role in the development of shared visions of the future: creating powerful 
expectations of the potential of emerging technologies and mobilising resources 
necessary for their realisation.    
 
This paper reviews the hydrogen futures literature, using a six-fold typology to map 
the state of the art of scenario construction. The paper then explores the expectations 
embodied in the literature, through the ‘answers’ it provides to questions about the 
future of hydrogen. What are the drivers, barriers and challenges facing the 
development of a hydrogen economy? What are the key technological building 
blocks required? In what kinds of futures does hydrogen become important? What 
does a hydrogen economy look like, how and when does it evolve, and what does it 
achieve? 
 
The literature describes a diverse range of possible futures, from decentralised 
systems based upon the small-scale renewables, through to centralised systems 
reliant on nuclear energy or carbon-sequestration. There is a broad consensus that 
the hydrogen economy emerges only slowly, if all under ‘Business as Usual’ 
scenarios. Rapid transitions to hydrogen occur only under conditions of strong 
governmental support combined with, or as a result of, major ‘discontinuities’ such 
as shifts in society’s environmental values, ‘game changing’ technological 
breakthroughs, or rapid increases in the oil price or speed and intensity of climate 
change. 
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1. Introduction 
Scenarios, roadmaps and similar foresight methods are increasingly used in 

academia,  government and industry as a means of coping with uncertainty in areas 

with long planning horizons, such as energy or transport policy (Greeuw et al. 

2000). Research into the future of hydrogen as an energy carrier and the putative 

‘hydrogen economy’ has been no exception. There is a rich contemporary literature, 

spanning articles in academic peer reviewed journals and official or semi-official 

policy documents, through to works of popular advocacy, exploring the future 

potential of hydrogen energy.  

 

Foresight methods and approaches can play an important role in the development 

and propagation of shared visions of the future, creating powerful expectations of 

the economic, social and environmental potential of emerging technologies; and 

mobilising the intellectual, financial, political and institutional resources necessary 

for their realisation (Weber 2004). 

 

This paper presents an extensive review of the current (English language) hydrogen 

futures literature, and maps the state of the art of scenario construction around 

hydrogen. The review undertaken for this work is not an exhaustive list of all 

hydrogen futures studies ever published. Rather, the aim has been to capture the 

diversity of the current hydrogen futures literature by identifying groups of studies, 

and characterising them by asking questions about their aims, how they were put 

together, what kinds of perspectives they have of the future and of technological 

change, and over what sort of timescales each type of study tends to operate.  

 

The paper is structured as follows. Section 2 briefly describes the search strategies 

used to identify and analyse the hydrogen futures literature. Section 3 presents a 

simple typology that characterises this diverse literature according to the objectives, 

methodology and narrative structure of the studies discussed. Six broadly distinct, 

although not entirely exclusive, types of study are identified. These are: 1) 

Forecasts; 2) Exploratory Scenarios; 3) Technical Scenarios; 4) Visions; 5) 

Backcasts/Pathways; and, 6) Roadmaps. Section 4 then provides a second analytical 

‘cut’ on this literature by interrogating it for the answers it provides to a series of 

questions about the future of the hydrogen economy: 
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• What are the drivers of a hydrogen economy? 

• What are the barriers and challenges facing the development of a hydrogen 

economy? 

• In what kinds of future does hydrogen become important? 

• Which technologies are important and what does a hydrogen economy look 

like? 

• How does a hydrogen economy develop and evolve? 

• When does a hydrogen economy emerge? and 

• What does a hydrogen economy achieve? 

   

Finally, section 5 draws together some overarching conclusions and reflections. 

2. Review Methodology 

Studies were identified by using electronic journal databases and internet searches to 

search for: ‘Hydrogen or fuel cells’ AND ‘economy’; ‘scenario’; ‘futures’; 

‘roadmap’; ‘pathway’; ‘routemap’; ‘forecast’; ‘foresight’; ‘backcast(ing)’; ‘vision’. 

Some studies were also brought to the attention of the investigators by colleagues 

working in the field. 

 

Studies were included that described a hydrogen or fuel cell future, or a strategy or 

‘route’ by which a hydrogen or fuel cell future might develop. There was a focus on 

those studies which were most relevant to the UK, but studies specific to other 

countries were included (Andersen et al. 2004; Arnasson & Sigfusson 2000; 

Australian Government 2003; Fuel Cells Canada; US Department of Energy 2002).  

 

A total of 40 studies, published between 1996 and 2004, were reviewed. Of these 11 

focus on hydrogen or fuel cells in road transport, whilst a handful looked only at 

stationary fuel cell applications. Most studies considered hydrogen or fuel cells in 

more general contexts, including a variety of production routes and uses. All of the 

studies were analysed against a standard template to ensure that the same elements 

of each were captured and compared in a rigorous and efficient manner (McDowall 

& Eames 2004). 
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3. A Typology of Hydrogen Futures 

 

Our analysis identified six distinct though overlapping types of hydrogen futures 

study1. These can be further grouped into ‘descriptive’ and ‘normative’ approaches. 

See Table 1 below. 

 

 

Table 1: A typology of hydrogen futures 

 

                                                 

1 This typology has been developed post-hoc: the individual studies do not 

necessarily identify themselves in the way in which they have been classified here. 
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3.1 Forecasts 

Table 2. Studies classified as ‘Forecasts’ 

 

Two ‘roadmaps’ also included market forecasts as part of the study (Fuel Cells 

Canada 2003; HyNet 2004). 

 

Forecasts are characterised by the use of quantitative methods to predict futures 

based on current trends, or based on surveys of expert opinion (Kosugi et al. 2004). 

They tend to explore shorter time scales (up to 2030). Most used inputs such as 

technological learning curves, demand projections, fuel cost or oil price projections, 

and the characteristics of competing technologies to model market penetration of 

fuel cells or hydrogen (Christidis et al. 2003; Fukushima et al. 2004; Mima & Criqui 

2003; Thomas et al. 1998). Some used ‘scenarios’ (here meaning variations in the 

set of input assumptions) to explore the impact of different factors on shaping the 

future of hydrogen. The most basic forecast in the literature simply extrapolates 

sales figures from 1996-2003 to project stationary fuel cell market growth to 2020 

(HyNet 2004). 

 

Rates of adoption of hydrogen technologies are considered to be largely a function 

of their relative costs compared to alternative technologies. However, several of the 

above studies also model the effects of policy interventions such as carbon taxes. 

 

In assessing what necessary developments must occur in order for a hydrogen 

economy to develop, these studies focus on concrete technological challenges (e.g. 

price of fuel cell electricity per kWh). The central challenge to a hydrogen economy 

is seen as bringing down the costs of hydrogen technologies, along with creating the 

necessary market conditions for penetration, such as the establishment of a 

refuelling infrastructure (sometimes assumed for the purposes of the modelling 

exercise). 

 

Significant strengths of forecasting approaches are that they can provide: 

quantitative targets for technology development (providing a sense of performance 

and cost necessary to compete successfully); a quantitative consistency check and 
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basis for exploring the importance of different assumptions; and unlike many of the 

other studies reviewed, they tend to view hydrogen in the context of wider energy 

systems and competing technologies. 

 

However, forecasts, particularly over long time-horizons, have been widely 

criticised for an overly deterministic view of the future (Berkhout & Hertin 2002; 

Smil 2000), and of technological change (Geels & Smit 2000). Such criticisms 

challenge the assumption that new technologies simply replace old ones, without 

perturbing the technological ‘regime’ or ‘paradigm’ in which they operate: creating 

new markets, new institutions, and new user behaviours and patterns of 

consumption. By themselves, such forecasts may be of limited use in helping us to 

understand the complex processes by which large technological systems are 

transformed. 

 

3.2 Exploratory scenarios 

Table 3. Studies classified as ‘Exploratory Scenarios’  

 

Rather than extrapolating from existing trends, exploratory scenarios seek to inform 

policymaking by illuminating underlying drivers of change, often drawing upon tacit 

knowledge and expertise, to build internally consistent storylines describing a 

number of possible futures.  

 

The exploratory scenarios reviewed here explore longer-term (2030 – 2100) futures 

and include trend-breaking developments. However, whilst the possibility of 

including ‘surprise’ elements is thought to be a key strength of the exploratory 

approach (van Notten et al. 2004; Schwartz 1996), this possibility was explicitly 

discussed in only two of the exploratory studies reviewed (Ohi 2002, Shell 2001), 

and not by others which nonetheless invoked trend-breaking changes such as 

sweeping shifts in social values (Barreto et al. 2003; Di Mario et al. 2003). 

Similarly, though some authors have emphasised the importance of participatory 

techniques in exploratory scenario building, (e.g. Berkhout & Hertin 2002), only the 
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studies by Ohi (2002), Watson et al. (2004) and the Australian Government (2003) 

appear to have involved stakeholders in their development. 

 

Unlike most of the other studies reviewed in this paper, several of the exploratory 

studies made explicit reference to theories of technological change, such as Geels’ 

multi-level perspective of technological transitions (Geels 2002; used by Andersen 

et al. 2004 and Watson et al. 2004). 

 

Three of the exploratory studies reviewed develop existing scenario sets e.g. the UK 

Foresight Futures framework (Watson et al. 2004) and the IPCC SRES scenario B1 

(Barreto et al. 2003; Di Mario et al. 2003). These studies explore the potential for 

hydrogen within their ‘parent’ scenarios, and use quantitative models (such as 

MESSAGE-MACRO, POLES, or the purpose-built THESIS) to enrich and help 

quantify the scenario outputs. 

 

The other exploratory studies develop new scenarios and storylines to explore the 

conditions under which a hydrogen future might unfold (Andersen et al. 2004; 

Australian Government 2003; Kurani et al. 2003; Ohi 2002; Shell 2001). This 

involves identifying sets of drivers that are likely to be important in the future 

development of hydrogen technologies and the transition to a ‘hydrogen economy’. 

At least one study assumed the presence of strong pro-hydrogen policies, to 

investigate the implications of such policies in a variety of future worlds (Andersen 

et al. 2004).  

 

The exploratory scenarios stand out as having more structured approaches to 

thinking about drivers, although they tend to emphasise those that operate at the 

‘landscape’ level. This approach has been criticised as being overly ‘top-down’ 

(Geels 2002b). However, when considering long time periods it arguably provides a 

useful means of capturing the broad dimensions of change. Table 2. (below) outlines 

the dimensions chosen by the eight exploratory scenario studies, such as rate of 

technological change, or type of governance.  

 

Table 4: Major drivers in exploratory scenarios 
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An important feature of exploratory scenarios is that the storylines are not supposed 

to be driven by a preconceived desirable end-point. However, many of the 

exploratory scenario studies reviewed here include a ‘happy ending’ storyline, in 

which CO2 is dramatically reduced and society is reasonably well off and secure. 

These scenarios tend to involve rapid technological change integrated with a socially 

responsible and globally co-ordinated society – with a significant role for hydrogen. 

This suggests a tendency for such exercises to come up with an unconscious 

‘favourite’ – one that, in this case, is usually decidedly pro-hydrogen. 

3.3 Technical Scenarios 

 
Table 5. Studies classified as ‘Technical Scenarios’ 

 

The approach of these studies is best summed by Hart et al. (2004): 

 

“…the purpose is not to predict the uptake of alternative fuels or vehicles…, but to assess 

the implications of a large-scale move, should it be attempted.” 

 

These studies explore different possible hydrogen-based technological systems, and 

assess the implications of these against a range of criteria, such as carbon emissions, 

cost, and technical feasibility. Technical scenarios are much more specific about the 

systems envisaged for the future, and how these might work in technological terms. 

Whilst such studies can make an important contribution to assessing the feasibility 

and desirability of alternative future systems, they often neglect the social and 

cultural dimensions of technological change.  

 

The future is viewed as a series of more or less static technological options, rather 

than storylines of technological change. Most of the studies (Eyre et al. 2002; Hart et 

al. 2004; Ogden 1999; Sørensen et al. 2004) make assumptions about future demand 

for energy provided by hydrogen, and model possible systems that would meet that 

demand. Of the five studies, three investigate the potential for producing hydrogen 

entirely from renewable resources. 

 

The drivers for change are considered at the macro-level of carbon emissions and 

energy security, while the major barriers identified are the higher costs of hydrogen 
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technologies, and the lack of renewable electricity supplies. However, these studies 

do not attempt to investigate the dynamics of the transitions to the modelled 

systems, and therefore do not explore the broader factors that would promote or 

inhibit particular futures developing, or how a hydrogen infrastructure might 

develop, as these issues are outside the scope of the analysis. 

 

3.4 Visions 

Table 6. Studies classified as ‘Visions’ 

 

There are two broad types of ‘vision’ identified in the literature. The first, and the 

kind with which this section is concerned, are produced by individuals or small 

groups, outlining a desirable hydrogen future. The second is produced through 

stakeholder workshops to provide the basis for a ‘road-mapping’ exercise, and is an 

attempt to generate a shared picture of a desirable future and way forward. This 

latter type will be considered under ‘Roadmaps’. 

 

Vision studies present, often rather utopian, narrative descriptions of a future 

hydrogen economy. In so doing they aim to show that a hydrogen economy is both 

plausible and desirable. These studies tend to be rhetorical rather than analytical. 

Their role is not to analyse or predict the future; the strength of the approach is that 

they expand the possibilities considered, and create a shared picture of what the 

future could be. Timescales are generally undefined, although visions are often set 

further into the future than more formal futures exercises. They also tend to include 

more ‘surprise’ elements that break with current trends (e.g. technological 

breakthroughs, shifts in social values). A notable misfit amongst these studies is a 

paper by Bossel et al. (2003), which presents a vision of an alternative to hydrogen, 

the ‘liquid synthetic-hydrocarbon economy’. 

 

Generally these visions depict a future where technological, infrastructural and 

institutional changes go hand-in-hand with a shift towards greener social values and 

a more egalitarian society. In the more radical examples, the hydrogen economy 

heralds no less than ‘the redistribution of power on earth’ (Rifkin 2002). Some even 
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frame a transition to a hydrogen economy as an inevitable development of human 

‘progress’ – e.g. Dunn (2001). 

 

While some see technological transitions as manageable through R&D investment, 

demonstration projects, taxes, and strong government leadership (Dunn 2001; 

Lovins & Williams 1999), others invoke a need for major shifts in social values 

(Goltsov & Veziroglu 2001), or revolutionary technological breakthroughs (Bockris 

1999). However, most visions do not directly address the dynamics of change or the 

development of infrastructure. 

 

The macro drivers of the transition to a hydrogen economy are perceived to be its 

potential societal benefits particularly with respect to climate change, but also fossil 

fuel depletion, energy security, air pollution, and ‘geo-political dominance’. 

However, at a meso/micro level, government actions and policy measures, such as 

funding for demonstration projects, tax regimes, and education programs, are seen as 

critical to shaping the emergence of a hydrogen economy. Other ‘micro’ drivers 

include the development of renewable energy and hydrogen technologies, and 

potential synergies between building and vehicle energy use. 

 

The degree of commonality amongst visions is striking, not least because they tend 

to gloss over potential areas of disagreement, such as the potential role of carbon 

sequestration or nuclear power. All the visions, with the exception of Bossel et al. 

(2003), see an eventual transition to a system in which hydrogen and electricity are 

predominant energy carriers, and are used more or less interchangeably. Vehicles 

will be fuelled by direct hydrogen, not synthetic or fossil hydrocarbons. Hydrogen 

provides the ‘missing link’ for intermittent renewables, allowing the entire world to 

move to a zero carbon economy. A weakness of the visions is that they tend to gloss 

over areas of disagreement (such as roles for carbon sequestration or nuclear power), 

and potential pitfalls or disadvantages associated with the development of a 

hydrogen economy.  
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3.5 Backcasts & Pathways 

 

Table 7. Studies classified as ‘Backcasts & Pathways’ 

 

These studies all start with the assumption that some form of hydrogen economy is 

desirable, and investigate possible paths by which the transition to that hydrogen 

future might be attained. Indeed, this attention transition issues is a key strength of 

these studies. This normative scenario process is in the spirit of backcasting, in 

which a future vision is elaborated, and storylines work back from that vision to the 

present (Robinson 1982). However, none of these studies represent extensive 

backcasting studies, nor do any refer explicitly to the methodological literature on 

backcasting or scenario building more generally. For most, a clear picture of a future 

hydrogen economy remains undefined, though goals are sometimes expressed as 

targets (e.g. California Fuel Cell Partnership target for number of fuel cell vehicles 

(FCVs) on the road). 

 

Typical timescales range from 2020 to 2050. Only the California study considers the 

possible effects of ‘surprise’ and discontinuities. Despite the attention to transition 

issues, few appear to draw explicitly on theoretical literatures on change in large 

technological systems. Most rely on a simple technology push/market pull models of 

technological change. An exception is Farrell et al. (2001), which is heavily 

informed by the multi-level ‘technological transitions’ theory of Geels (2002).  
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3.6 Roadmaps 

 
Table 8. Studies classified as ‘Roadmaps’ 

 

Like backcasts, roadmaps assume the desirability of hydrogen, often defining a 

(usually vague) vision, and outlining a series of steps to get there. The difference 

with backcasts/pathways is in the way that roadmaps view the future, as explained 

below. 

 

In general, assumptions about the future are not made explicit or explored, leaving 

‘business as usual’, or the continuation of current trends as a default perspective. 

Unlike in other futures studies, the future is described only in terms of the actions to 

be taken and the targets to be met, rather than elaborating broader aspects of a future 

world, or describing storylines. The future is treated instrumentally, as a ‘policy 

problem’, with the emphasis placed on what is to be achieved.  

 

Most of these roadmaps combine three important aims. Firstly, to identify barriers to 

the emergence of a hydrogen future and the measures needed to overcome them. 

They explore and, often graphically, communicate the relationships between future 

markets, technologies and policies (Phaal et al. 2003). Secondly, most fulfil an 

advocacy function. As a result it has been suggested that many roadmaps create 

unrealistically rosy expectations of a technology’s future (Geels & Smit 2000). 

Lastly, the roadmapping process seeks to bring together key stakeholders to develop 

a shared vision of the future: a common ‘script’, defining agreed roles and cues for 

action. Whilst this may also be an implicit function of other types of scenario 

studies, it is an explicit aims of many roadmapping initiatives.  

The great strength of the roadmapping approach is the identification of barriers and 

solutions to them, and generation of shared targets. While the process itself is often 

important in terms of bringing together stakeholders in a common strategic forum, 

the final roadmap itself also provides a measure against which progress can be 

measured.  
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Building a roadmap usually involves groups of stakeholders identifying the drivers, 

barriers, targets, and wider threats and opportunities. Some roadmaps are less 

inclusive, and are produced by advocates of particular policy routes. The approach is 

very pragmatic. Policies are usually identified for the short term (5-10 years), with 

targets mapped out over the longer term (up to 2050 and beyond). Such studies are 

often dominated by rather linear market pull/technology push perspectives.  

 

4. What does the literature say about a hydrogen future? 

 

Having outlined the main types of hydrogen futures studies, the following section 

examines what this literature tells us by examining the answers it provides to a series 

of specific questions about the future of the hydrogen economy,.  

4.1 What are the drivers of a hydrogen economy? 

 

The literature revealed divergent views on the factors that will shape the future of 

hydrogen energy. In many of the visions and exploratory scenarios, for example, the 

development of a hydrogen future is explicitly seen as being driven by shifting 

social values, particularly the emergence of stronger environmental values, but also 

greater concern for social equity: the later being perceived to underpin a shift away 

from centralised energy production and distribution towards more distributed forms 

of generation.     

 

Many of the visions suggest that the major technological barriers have been 

overcome, or are readily solvable, as long as the political will is there to provide 

funding and support (e.g. Dunn 2001; Lovins & Williams 1999; Goltsov & 

Veziroglu 2001; Rifkin 2002). These studies frame the hydrogen economy as an 

issue of politics – held back only by the inability of governments to take a lead.  

 

In contrast, many other studies focus on technological drivers (Bockris 1999; Bossel 

et al. 2003; Kosugi et al. 2004; Owen & Gordon 2002). Some of these make the 

implicit assumption that ‘if it works’, the hydrogen economy will be realised, while 

others focus on costs, working on the principle that it has to ‘work’ at a price that is 
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competitive with conventional technologies (Mima & Criqui 2003; Thomas et al. 

1998).  

 

The literature also includes divergent views on the level at which driving factors 

should be considered. This means that the term ‘drivers’ has many interpretations, 

just as the terms ‘scenario’, ‘vision’ and ‘roadmap’ are used in a variety of different 

contexts. Exploratory scenarios consider drivers to be broader societal changes 

(social values, rate of technological change etc), while other studies defined 

government intervention and investment in R&D as a driver, or specific market 

demands, such as that for backup power.  

 

However, four overarching problems or policy objectives consistently stand out in 

the literature as providing the underlying drivers of a transition to a hydrogen future. 

These are: 

 

Climate change: Reducing carbon dioxide emissions is clearly considered to be the 

most important of these. Climate change is cited by all of the studies reviewed. 

Indeed, seven of the studies refer only to climate change as a reason for a transition 

to a hydrogen economy.  

 

Energy security This encompasses a range of concerns over the finite nature of oil 

and gas reserves, their geopolitical sensitivity and location, energy prices, and 

vulnerability of centralised energy systems to attack. No studies focused exclusively 

on this aspect, and eighteen made no mention of energy security at all. Of the studies 

that emphasise energy security (Arnasson & Sigfusson 2000; Australian 

Government 2003; DTI 2004; Dunn 2001; NHA 2004; Rifkin 2002; US Department 

of Energy 2002), most are roadmaps or visions. 

 

Local air quality:  Many studies cited reductions in local air pollution as a 

significant benefit of a transition to a hydrogen economy, though only regionally 

focused studies, such as those from London and California (California Fuel Cell 

Partnership 2001;  London Hydrogen Action Plan 2002; Ogden 1999; Thomas 1998) 

gave this factor particular emphasis.  
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Competitiveness: Seven studies refer to international competitiveness as an 

important driver in the transition towards a hydrogen economy (Australian 

Government 2003; Fuel Cells Canada 2003; Fuel Cells UK 2003; Greater London 

Authority 2002; HyNet 2004; Owen & Gordon 2002; US Department of Energy 

2002). 

 

A final less frequently cited objective is the potential of FCVs to reduce noise 

pollution in urban areas. 

 

4.2 Barriers & Challenges 

 

The literature recognises a diverse range of barriers to the development a hydrogen 

economy. The three most prominent  are:  

 

� The absence of a hydrogen refuelling infrastructure - the difficulty of 

establishing a market for FCVs in the absence of a refuelling infrastructure - 

and vice versa.  

 

� High costs: particularly of fuel cells and of low-carbon hydrogen production.  

 

� Technological immaturity: hydrogen on-board storage and consequent 

limited current driving range of hydrogen vehicles; limited life-time of fuel 

cells. Several other technological challenges are specific to particular 

hydrogen futures, and will be discussed in the context of the differing 

technological architectures envisaged for hydrogen in section 4.4. 

 

Other frequently cited barriers include safety, public acceptability, and the absence 

of codes and standards.  

 

There are also many barriers that are picked up by only a few studies, including: the 

absence of surplus renewable electricity; social values that disregard the 

environment; a regulatory framework that currently supports fossil fuels; ability of 

incumbent technologies to adapt in the face of competition from hydrogen; limited 
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skills base; absence of global co-operation or plan of action; limited availability of 

fuel cell components, particularly platinum; difficulty of technological developers in 

accessing capital; lack of demand for hydrogen products; and, social opposition, 

uncertainty over viability and costs of carbon sequestration.  

 

4.3 In what kinds of future does hydrogen become important? 

 

The exploratory scenarios are rather consistent. Hydrogen emerges in future worlds 

where there is medium-strong economic growth, associated with rapid technological 

development; and when  

 

a) Concerns about the environment are strong, especially when climate change 

becomes obvious;  

or, 

 

b) When traditional energy supplies are expensive or vulnerable.  

 

Hydrogen does not emerge in worlds dominated by market rather than social values; 

where climate change impacts are small; where technological development is slow; 

and when economic growth stagnates. The development of hydrogen is patchy in 

worlds of strong regional autonomy, with strong uptake locally only in areas without 

significant oil or gas reserves. 

 

Does a hydrogen future rely on ‘step-changes’? 

It is noteworthy that  hydrogen generally emerges slowly or not at all in ‘Business as 

Usual’ type scenarios (Andersen et al. 2004; Australian Government 2003; Di Mario 

et al. 2003; Owen & Gordon 2002; Mima & Criqui 2003; Ohi 2001).  

 

In contrast, rapid penetration of hydrogen occurs only when there is strong 

government support (although typically even this is not seen as a sufficient 

condition: Andersen et al. 2004; Di Mario et al. 2003), or major ‘discontinuities’, 

such as shifts in social values (Di Mario et al. 2003; Ohi 2001), technological 
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breakthroughs that radically reduce costs  (Ohi 2001), shifts in the relative price of 

oil (Andersen et al. 2004), or increases in the speed and intensity of climate change. 
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4.4 What does the Hydrogen economy look like? 

 

The drivers, barriers and challenges outlined above shape a wide range of possible 

hydrogen economies, involving different technological trajectories and 

‘architectures’, demonstrating very different conceptions of what is meant by a 

‘hydrogen economy’. Only some (19) of the studies provide detail about the sources, 

uses and modes of distribution of energy in a hydrogen future. Of those that do, 

most fall into one of two broad technological architectures: decentralised or 

centralised, as illustrated below.  

 

1) Decentralised architectures 

 

 

These architectures are based on local production of hydrogen, from electrolysis, 

biomass processes, or steam reforming of natural gas. Some decentralised systems 

envisage hydrogen production from local energy sources (such as small-scale 

biomass conversion, or ‘micro’ renewables) while others see energy production as 

remaining centralised, with energy transferred to hydrogen production units (in 

homes or on forecourts) either as electricity or natural gas. Decentralised hydrogen 

production overcomes many of the infrastructural barriers facing a transition to 

hydrogen.  

 

Figure 1. Shows common building 
blocks of a decentralised hydrogen 
production systems. Text size of 
each building block indicates the 
number of studies that envisage a 
role for it. 
 
Key technologies: Small scale 
electrolysis and Steam Methane 
Reforming of natural gas (SMR), 
renewables, ‘energy station’ 
stationary systems, Fuel Cell 
Vehicles (FCVs). 
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Some studies (Foley 2001; NHA 2004), particularly those with a focus on road 

transport, see on-site hydrogen production as a transitional phase (for discussion of 

how these technological architectures change, see below). For others, 

decentralisation is a key feature of the hydrogen economy, allowing the benefits of 

distributed generation, home refuelling, and even the ‘democratisation of energy’ – 

empowering people by giving them control of energy (Rifkin 2002). Some of the 

decentralised systems involve synergy between the transport and heat & power 

sectors, with fuel cell vehicles (FCVs) both providing mobile power and selling 

power to the grid at times of peak demand (Australian Government 2003; Barreto et 

al. 2003; Dunn 2001; Lovins & Williams 1999). 

 

 

2) Centralised architectures 

 

 

A centralised system can draw on a wider variety of energy sources than 

decentralised systems (coal gasification and nuclear thermal hydrogen generation, 

for example, are largely incompatible with decentralised systems) but it depends on 

the development of a dedicated hydrogen distribution infrastructure. Many of the 

centralised systems focus on hydrogen use in road transport, and envisage local 

hydrogen pipeline grids linking early demonstration projects and fleet vehicle 

refuelling depots, creating ‘hydrogen corridors’ in areas of high demand. 

 

Figure 2. Shows common building 
blocks of a centralised hydrogen 
production systems. Text size of 
each building block indicates the 
number of studies that envisage a 
role for it. 
 
Key Technologies: Carbon 
sequestration, Pipelines, renewables, 
biomass, FCVs, Stationary fuel 
cells. 
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A third technological architecture, described by Bossel et al. (2003) and Arnasson & 

Sigfusson (2000), involves the use of hydrogen and captured carbon to synthesise 

liquid hydrocarbon fuels, such as methanol. These liquid hydrocarbon fuels can then 

be used in FCVs with on-board reforming. It is argued that this can be compatible 

with a low-carbon hydrogen economy, since the carbon for the fuel is captured from 

other sources (such as industrial emissions from metals processing (Arnasson & 

Sigfusson 2000), or biomass (Bossel et al. 2003). 

 

Other very different technological architectures are possible, e.g. the Shell scenarios, 

initially at least, envisage hydrogen sold ‘in a box’ as a fuel cartridge, which it is 

claimed breaks current distribution and infrastructure paradigms (Shell 2001). 

 

Many studies envisage a final mix of centralised and decentralised architectures, 

with pipelines in areas of strong demand, and with both centralised and 

decentralised production supplying the hydrogen market, or see one as a precursor to 

the other. 

 

Each architecture is dependent on key technological building blocks. 

If government or industry support a particular architecture, or simply expect a 

particular architecture to emerge, R&D will prioritise particular technological 

challenges, which may be irrelevant for other possible architectures. This highlights 

the role that expectations and visions of the future can play in directing 

technological change – a vision of a future architecture defines the technological 

challenges in the present. 

 

The corollary of this is that a technological ‘breakthrough’ may lead to a particular 

architecture becoming dominant. For example, the development of low-cost liquid 

hydrogen storage, or a (perceived) failure of solid storage and high-pressure tanks, 

could rule out decentralised systems, given the technological difficulties of small-

scale liquefaction. Similarly, a breakthrough in on-board reforming could make the 

synthetic liquid hydrocarbon route more attractive, obviating the need for on-board 

hydrogen storage. Breakthroughs in key technologies could thus produce ‘emerging 

irreversibilities’, leading to ‘lock-in’ or ‘path dependency’ (see Arthur 1989; David 
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1985;  Rip & Schot 2003), a phenomenon cited by some authors as a reason to avoid 

R&D in particular technologies, such as on-board methanol refuelling (Lovins & 

Williams 1999, NHA 2004). 

 

For decentralised systems, the major technological challenge is the expense of 

hydrogen from small-scale natural gas reformers and electrolysers, while centralised 

systems rely on the viability of a large-scale hydrogen distribution infrastructure, 

and prospects for centralised systems are greatly enhanced by cost effective coal 

gasification or nuclear-thermal water splitting.  

 

Additional technological developments are necessary for the envisaged hydrogen 

economies to be low-carbon: plentiful and competitive renewable electricity, carbon 

sequestration, or nuclear power. While fossil fuels are seen by most studies as 

transitional, some envisage a long term role for fossil fuels based on sequestration.  

 

Key technologies for all pathways include improved fuel cell power density and 

longevity, improved fuel cell economics, and fuel storage. Compressed hydrogen is 

seen as the most likely option by most studies, though solid state storage is thought 

to be a possible long term solution. Liquid hydrogen storage is considered to have a 

transitional role in some studies..  

 

The basis on which studies reject particular building blocks varies, from the ‘purely 

technological’ rejection of liquid storage as hopelessly energetically inefficient, to 

the rejection of components that fail to meet policy goals. For example, studies with 

an emphasis on climate change reject carbon-emitting hydrogen technologies, while 

studies concerned with energy security focus on nationally abundant resources, such 

as coal in the United States and Australia, wind in Denmark, and hydroelectricity in 

Iceland.  

 

In summary, the literature envisages a range of hydrogen economies, which are 

described in terms of alternative technological architectures. The future of hydrogen 

is thus contested. The roles of carbon sequestration, nuclear energy, renewable 

electricity, on-board reforming of hydrocarbons and the viability of pipelines and 

trucked hydrogen are all areas of particular debate and uncertainty. The basis on 
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which different elements, or ‘building blocks’, are included or rejected varies, but 

there are also shared elements. Almost all include fuel cell vehicles, and most 

include strong roles for renewables. Steam methane reforming is widely expected to 

be the principal method of producing hydrogen over the short-to-medium term. 

Finally it should be noted that crucial technological details are often omitted.  For 

example, many studies suggest a role for fuel cells in distributed electricity 

generation, but do not specify the type of fuel cell, or fuel used.  

 

4.5 Evolution of hydrogen economies  

 

As noted above much of the literature seeks to illuminate pathways to a hydrogen 

future. Whilst there is considerable variation in the transition paths described, a 

number of patterns are apparent, e.g. 

 

1) From decentralised to centralised: Most studies see the decentralised route as the 

key to by-passing the infrastructural problem, but some (e.g. US Department of 

Energy 2002) see centralised production as coming first, through the ‘link-up’ of 

demonstration projects and the creation of ‘hydrogen highways’ or ‘corridors’ 

fuelled with industrially produced hydrogen. 

 

2) From fossil fuels to renewables: Most studies see the ultimate hydrogen economy 

as fuelled entirely by renewables, with electricity and hydrogen as the dominant, and 

largely interchangeable energy carriers. Fossil fuels, and nuclear, are described, in 

some studies, as transitional technologies, or ‘bridges’. 

 

There are also disagreements about system evolution. There is broad agreement that 

fleet vehicles, refuelled at depots, will be the most likely entry point of hydrogen 

into road transport (despite evidence from other alternative fuels that fleets may be 

poor early markets; McNutt & Rodgers 2004). However, there is marked 

disagreement about the types of fuel cell vehicles that will be first to enter the 

market. One line of argument is that the technology exists for small passenger cars 

to decrease greatly in weight, thus to some extent reducing the power and storage 

requirements of fuel cell systems, and that such ‘hypercars’ are the ideal strategy for 
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a hydrogen transition (Lovins & Williams 1999). Others argue that large heavy 

goods vehicles are more appropriate early adopters, since the space and weight 

requirements are less stringent – especially true for shipping (Arnasson & Sigfusson 

2000; Farrell et al. 2001). The ability of fuel cells to provide auxiliary power for 

services (especially IT) inside luxury and large vehicles (such as SUVs), could 

provide convenience that will offset minor losses in driving range and performance 

(Kurani et al. 2003). 

 

Another area of disagreement concerns the sequence of introduction of FCVs and 

stationary fuel cells, with views differing about which are likely to enter and 

dominate markets first. 

 

4.6 Early learning: the importance of niche markets in technology 

development 

 

A variety of early niche markets are either recognised or advocated as providing an 

important stage for the development of a hydrogen economy. Most of these early 

markets or technologies are described as overcoming cost barriers, by providing 

niche applications that allow learning and scale economies, as well as increasing 

public familiarity. The role of learning in niche applications is stressed in many 

approaches to technological change (e.g. Kemp, Schot & Hoogma 1998). 

 

1) H2 Internal Combustion Engine vehicles – Hydrogen ICEs are far cheaper than 

FCVs, and are likely to remain so for some years. Their adoption could provide low 

pollution vehicles that help stimulate a market for hydrogen, and provide a means 

for public familiarity with hydrogen as a fuel.  

 

2) Portable electronics and consumer goods – Widely seen as the most likely early 

fuel cell market, growth in micro and small fuel cell sales is thought likely to help 

drive down fuel cell prices, and push fuel cell acceptability and familiarity. 

 

3) Remote and off-grid power – Would bring down FC system costs, allowing 

cheaper small scale electrolysis or steam methane reforming.  
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4) Premium/backup power – as above. It is argued that stationary fuel cells for 

backup or premium power, using the ‘energy station’ concept described above, 

could potentially become nodes for hydrogen refuelling. 

 

6) Injection of hydrogen into natural gas mix (up to 20%), and either using the 

mixture directly to lower emissions, or separate the gas and hydrogen, and using the 

natural gas network as a nascent hydrogen pipeline network (Andersen et al. 2004) 

 

7) Auxiliary power units (APUs) for vehicles – APUs would provide electricity in 

vehicles much more efficiently than current systems, and remain available when the 

engine is off, making them attractive to the military and long-haul trucks in 

particular (Lutsey et al. 2003). The cost challenges for APUs are much less daunting 

than for automotive cells.  

 

8) Ships – not constrained by size and weight as much as passenger cars, so storage 

is less of an issue. Can provide both reductions in fuel cell costs, and learning 

processes that will stimulate progress (Farrell et al. 2001). 

 

8) Demonstration projects – Currently the largest market for fuel cells. Public 

authorities and companies eager to demonstrate commitment to high technology and 

green values are providing a niche demand for fuel cells, allowing cost 

improvements through scale economies and learning. 

 

4.7 When does a hydrogen economy emerge? 
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Figure 3. Shows estimated dates for a transition to a fuel cell based transport system. 

 

Figure 3 above sketches the estimates made for the transition to fuel cell vehicles, a 

‘building block’ common to all but a few of the hydrogen futures studies. We have 

included estimates from two studies that were not included in the review, as their 

major focus is other than hydrogen (IEA 2003; RAC 2002). The chart is a graphical 

aid, rather than formal plotting of estimates (the Y axis is not standardised and is 

inevitably somewhat subjective), but serves to illustrate both the diversity of views 

on a likely timetable for transition, and some common threads. The chart shows 

predictions of what is likely or possible, rather than proposed targets, which have 

not been plotted. Where studies straddle categories along the Y axis, different 

possible futures were considered in the study with differing levels of FCV 

penetration, each assumed to be equally likely.  

 

4.8 Policies 

 

Many studies recommend particular policy paths, and a number of approaches are 

evident. At one extreme, one study advocates “the formation of a new environmental 

consciousness of the general public of all countries…based on scientific, highly 
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reliable predictions” (Goltsov & Veziroglu 2001). Other studies, rather more 

prosaically, propose the variety of specific measures outlined below. 

 

The four most commonly advocated policy measures are: 

� Increased R&D funding (often targeted at specific problems, particularly 

storage);  

� Public education programmes;  

� Infrastructure development (sometimes through establishment and ‘link up’ 

of demonstration projects);  

� Tax incentives for hydrogen fuel and vehicles.  

 

Other commonly recommended policies include: the development of codes & 

standards; mandates for zero emission vehicles; promotion of hydrogen through 

government and industry champions; clear government support to stimulate 

confidence and attract investment. Other recommendations include support for 

renewables; development and dissemination of a clear ‘transition strategy’ to 

provide confidence and reduce uncertainty; targets for low carbon vehicles; and 

improving the fuel cells skills base. 

 

In the policy recommendations proposed, there is a tension between the risks of 

‘winner-picking’, and of ‘lock-in’. A winner picking strategy, involving definition 

of the technologies of the future, is high risk and arguably unrealistic – we can never 

know the best technology in advance. Conversely, an incremental approach, 

avoiding picking winners by providing a goal-oriented policy framework (e.g. 

incentives for low carbon vehicles), may be subject to ‘lock-in’ to current 

technological trajectories, which only winner-picking policies can break. 

 

4.9 What does a hydrogen economy achieve? 

 

Six studies address the extent to which a transition to a hydrogen future will 

ameliorate CO2 emissions (Barreto et al. 2003; Di Mario et al. 2003; Eyre et al. 

2002; Hart et al. 2003; Owen & Gordon 2002; Watson et al. 2004). All conclude that 

hydrogen, and in particular fuel cell vehicles, can make a significant impact on 
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reducing carbon emissions in the long term. However, three of these (Eyre et al. 

2002; and Hart et al. 2003; Owen & Gordon 2002) suggested that the benefits from a 

transfer to hydrogen will only occur after 2030-2050, and that moving to a 

hydrogen-based road transport system before this is likely to increase total carbon 

emissions (either on a wells-to-wheels basis, or through the displacement of carbon 

gains from renewable electricity). 

 

5. Discussion and conclusions 

 

Futures in Hydrogen: The state of the art 

The literature reveals a range of sophisticated models, exploratory narrative 

techniques, simplistic trend extrapolations, rhetorical arguments, and strategic plans. 

Very few used participatory techniques, with the notable exception of many 

roadmaps, and two of the exploratory studies. None of the backcast studies 

represented a major and theoretically grounded backcasting exercise. Of all the 

studies describing hydrogen futures, only four made any reference to theoretical 

literatures of technological change. 

 

The six types of study reveal five ways of considering and understanding the future 

of hydrogen energy and hydrogen technologies: 

i) As a product competing in a largely context-free market place (forecasts) 

ii)  As a possibility among many as broader changes in society unfold (exploratory 

scenarios) 

iii)  As a sequence of possible technological systems or architectures. (technical 

scenarios) 

iv) As a normative vision of a future world, in which hydrogen saves society 

(visions) 

v) As a solution to specific problems, and thus a policy goal (backcasts and 

roadmaps) 
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What is wrong with the hydrogen futurist’s toolbox? 

� The general lack of theory leads to several of the common futures ‘pitfalls’ 

identified by Geels & Smit (2000): for example, determinism and a pre-

occupation with new, ‘exotic’ technologies. Furthermore, many of the 

studies that lack a theoretical background ‘model’ the effects of technology 

policies in their depiction of a hydrogen transition, making assumptions 

about the effects of policies on innovation and diffusion of new 

technologies, but without making the basis for these assumptions explicit. 

 

� Lack of transparency and participation. 

 

� Lack of distinctness or clarity in the roadmaps 

 

� Predictions, forecasts and targets are recycled in the literature, deployed as 

arguments to confirm particular views of the future, rather than treated as 

best guesses under uncertainty, and targets tend to be recycled as predictions 

(e.g. the London Hydrogen Action Plan picks up targets from the Japanese 

Vision). 

 

� The literature tends to provide a rather top down view, emphasising global 

and national drivers whilst paying little attention to the local challenges and 

opportunities associated with particular geographical areas 

 

� Few studies seek to systematically assess the broader sustainability impacts 

of a large-scale transition to a hydrogen economy. So for example there is 

little attempt to deal with product lifecycle and waste/de-commissioning 

issues – such as the possible toxicity of fuel cell components or hydrogen 

storage materials.  

 

� Many of the studies reviewed tend to treat prospective developments in 

hydrogen in relative isolation, rather than as embedded features of 

overarching energy and transport  systems. As a result they tend to give 

insufficient attention to the broader systems changes required for the 

envisaged hydrogen futures to be achieved, for example with respect to the 

primary energy basis of particular Hydrogen routes. 
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Moreover, many of the descriptive futures appear to display a pro-hydrogen bias, as 

is clear from the way that barriers to a hydrogen transition are considered. For 

example, the difficulty of storing hydrogen, a function of its low mass, is framed not 

as a disadvantage, but as a technological ‘challenge’. 

 

On the basis of the above one could argue that there is a need for more critical 

theoretically informed studies, explicitly addressing the sustainability, energy and 

transport policy implications, and socio-technological dynamics of the transition 

hydrogen. However, this criticism needs to be set against the broader function of 

much of this literature in stimulating imaginative thinking and so ‘opening up’ 

different possible socio-economic and technological futures, rather of ‘closing 

down’ possible options on the basis of inevitably incomplete knowledge. 

Furthermore, whilst this review has drawn attention to the lack of rigour in the 

treatment of technological change and socio-technical transitions found in much of 

the hydrogen futures literature, one needs balance this against the limited predictive 

utility of current theoretical approaches to these issues.       

 

What can we learn from the hydrogen futures literature?  

 

The literature represents a rich resource describing the diversity of opinions about 

possible and desirable hydrogen futures, demonstrating that the hydrogen economy 

is not a simple, single idea. Moreover, this diversity of opinions extends beyond 

possible hydrogen systems, and includes the criteria on which those systems are 

understood and evaluated, implying that purely technological understandings alone 

will be unable to define a single ‘sustainable hydrogen economy’. 

 

More specifically, the questions explored in section 4 provide insights into specific 

areas: 

 

� Amidst a range of opinions about the types of factor that will shape the 

future of hydrogen, four major policy drivers are evident in the literature: 

climate change, energy security, air pollution, and perceived competitive 

advantage in developing hydrogen technologies.  
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� Three major barriers are also clear: infrastructure, technological immaturity, 

and cost. 

 

� In ‘business as usual’ scenarios, hydrogen emerges slowly or not at all. In 

this literature, hydrogen only emerges quickly where governments take 

strong action in the face of climate change or security fears, or radical 

technological or social change occur. 

 

� There is no agreement on what a ‘hydrogen economy’ might look like.  

 

� Despite uncertainty about how a hydrogen economy will emerge and evolve, 

a series of ‘promising niches’ were identified as playing important roles in a 

transition. Widely divergent views exist on the likely dates of ‘market entry’ 

for fuel cell vehicles.  

 

� There is considerable uncertainty over what, in terms of greenhouse gas 

emissions, a transition to hydrogen energy would achieve in the short to 

medium term. 

 

Conclusion: No Hydrogen Economy, but many hydrogen 

economies. 

 

Shared visions and expectations of the future can be powerful forces in the shaping 

of technology, directing and constraining research efforts by providing a mental map 

of future ‘possibility space’; recruiting support; mobilising resources; and providing 

a ‘protected space’ for new and emergent technologies, whose future promise can do 

much to offset their present poor performance (Geels & Smit 2000; van Lente, 

1993). The Hydrogen Economy is one such vision, yet the range of possible 

hydrogen economies depicted in this review demonstrate that the shape of a future 

hydrogen economy is contested rather than shared. Key disagreements focus on the 

sources of hydrogen, with disputes over the roles of nuclear power and carbon 

sequestration, while another set of disagreements focus on the configuration of 

infrastructure. 
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It may be that the indistinctness of the ‘hydrogen economy’ is part of the key to its 

rhetorical power. Berkhout (2004), borrowing a phrase from Bijker’s work on the 

Social Construction of Technology (Bijker 1995), claims that visions with greater 

‘ interpretive flexibility’ have a greater ability to compete among multiple possible 

images of the future. This could help explain why many of the roadmaps fail to 

specify what is meant by a hydrogen economy – their very vagueness allows 

hydrogen to become ‘all things to all men’. 
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Table 1. 
 
Caption:  
 
Table 1: A typology of hydrogen futures 

 

Forecasts use formal quantitative extrapolation and modelling to predict 
likely futures from current trends. 
 
Exploratory scenarios explore possible futures. They emphasise drivers, 
and do not specify a predetermined desirable end state towards which 
must storylines progress. 
 

D
es

cr
ip

tiv
e 

Technical scenarios explore possible future technological systems based 
on hydrogen. They emphasise the technical feasibility and implications of 
different options, rather than explore how different futures might unfold. 
 
Visions are elaborations of a desirable and (more or less) plausible future. 
They emphasise the benefits of hydrogen rather than the pathways through 
which a hydrogen future might be achieved. 
 
Backcasts and pathways start with a predetermined ‘end’ point – a 
desirable and plausible future. They then investigate possible pathways to 
that point. 
 N

or
m

at
iv

e 

Roadmaps describe a sequence of measures designed to bring about a 
desirable future. Studies from the previous four groups, or elements of 
these groups, frequently form the basis for the identification of specific 
measures, but not always. 
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Table 2.  
 
Caption: 
 
Table 3. Studies classified as ‘Exploratory Scenarios’ 

 
 
 

 Study Brief description 
Christidis et al. 
2003 

Study using the IPTS Transport Technologies model to explore fuel cell vehicle 
market penetration with business as usual projections, plus sensitivity to oil price, 
industry decisions, and carbon policies.  

Fukushima et al. 
2004 

Uses quantitative model to project diffusion of solid oxide fuel cells for power 
generation in Japan, exploring sensitivity to technological change, component 
availability and recycling, and fuel price.  

Kosugi et al. 2004 
A survey of expert opinion used to provide predictions of fuel cell technological 
development. 

Mima & Criqui 
2003 

Uses New & Renewable Technologies module of the POLES world energy model 
to forecast penetration of fuel cells into both stationary and mobile applications, and 
explore the impacts of technology breakthroughs, cheaper natural gas, and carbon 
policies. 

F
o

re
ca

st
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Thomas et al. 1998 
Uses a market penetration model to predict fuel cell vehicle uptake under the 
California Zero Emission Vehicle mandate, and calculates returns on investment, 
and social cost/benefit ratios. 
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Table 3.  
 
Caption: 
 
Table 3.  
 

 Study Brief description 
Andersen et al. 
2004 

Participatory exercise based on the development of qualitative scenarios to describe 
possible contexts for hydrogen development, followed by workshops to generate 
targets for hydrogen technologies. 

Australian 
Government 
2003 

Develops qualitative scenarios for high, medium and low hydrogen uptake. 
Explores the combinations of drivers that might push a hydrogen economy. 

Barreto et al. 
2003 

Elaborates on the SRES-B1 scenario developed by the IPCC. Hydrogen is 
introduced in a qualitative scenario, and this is then quantified using MESSAGE-
MACRO 

Di Mario et al. 
2003 

Uses the SRES B1 scenario as a baseline around which two alternative hydrogen 
scenarios are explored, with low and high hydrogen uptake. Each of the scenarios 
are then quantified. 

Kurani et al. 
2003 

Explores the growth in three sets of infrastructure: transport, communications, and 
power grids, and uses these socio-technical trends to explore the future for FCVs as 
mobile communications and power platforms. 

Ohi 2002 
Three qualitative scenarios, structured around rate of technological change and 
dominant social values, are used to explore possible futures for hydrogen and R&D 
strategies that are robust across scenarios. 

Shell 2001 
Explores two scenario storylines, one of which describes a possible future for 
hydrogen arising from a radical innovation in hydrogen storage. 

E
xp

lo
ra

to
ry

 s
ce

n
ar
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Watson et al. 
2004 

Uses the UK DTI Foresight Futures framework to structure four qualitative 
scenarios. The prospects for hydrogen in each different ‘world’ are examined and 
quantified. 
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Table 4.  
 
Caption: 
 
Table 4: Major drivers in exploratory scenarios 
 

Study Dimensions Assumed 
correlations 

Australian 
Government 
2003 

Rate of economic growth 
Strength of social & environmental values 
Rate of technological change 
Conventional energy price 

Economic growth defines 
energy price, and to a 
large extent technological 
change. Environmental 
values strongest in 
highest growth world, 
lowest in low growth 
world.  

Ohi 2002 Environmental & Social activism 
Rate of technological change 

Strong social values can 
make increased R&D 
funding politically 
acceptable, driving faster 
technological change 

Andersen et 
al. 2004 

Not expressed as ‘dimensions for change’ in the 
study itself – these are inferred. 
Balance of power: market vs. state 
Severity of climate change impacts 
Security of oil supplies 

Environmental concerns 
vary according to the 
market vs state 
relationship, with the 
most market-oriented 
scenario having least 
concern. 

Watson et al. 
2004 

Used the dimensions of the UK Foresight: 
Strength of social & environmental values 
Governance system: autonomy-globalisation 

Assumes that 
technological change, 
rates of economic growth, 
etc are ultimately derived 
from these fundamental 
dimensions of change. 

Shell 2001 Resource scarcity 
Technological advance 
Social and personal priorities 

Assumed correlations not 
clear  

Di Mario et 
al. 2003 

Used the dimensions of the IPCC Special 
Report on Emissions Scenarios 
B1 world only (see above), rates of hydrogen 
penetration within this determined by 
government support. 

Strong environmental 
values and globally co-
ordinated decision-
making allow steady and 
sustained economic 
growth. 

Kurani et al. 
2003 

Explored only one future – characterised by 
three driving dimensions 
Growth in mobility 
Growth in mobile energy demand 
Growth in mobile communications  

Assumed correlation 
between the three 
dimensions. 

Barreto et al. 
2003 

Used the dimensions of the IPCC Special 
Report on Emissions Scenarios  
B1 world – high environmental values, strong 
globally co-ordinated decision-making. 

Strong environmental 
values and globally co-
ordinated decision-
making allow steady and 
sustained economic 
growth. 
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Table 5.  
 
Caption: 
 
Table 5. Studies classified as ‘Technical Scenarios’ 

 Study Brief description 

Eyre et al. 2002 
Uses qualitative scenarios to define energy demand conditions in 2050, and then 
examined the carbon emissions of alternative possible technological systems that 
would meet that demand. 

Hart et al. 2003 

Examines implications of supplying transport energy demand with renewably 
produced hydrogen or biofuels, given estimates of 2050 transport demand. Models 
penetration of different combinations of vehicle and fuel technology, and examines 
the carbon impacts. 

Ogden 1999 
Outlines five alternative possible systems that would meet projected transport 
demand for southern California in 2020, and calculates the investment costs 
associated with each. 

Sørensen et al. 
2004 

Describes two possible technological systems based on hydrogen and wind 
electricity, matching hour by hour electricity demand, and for each system 
calculates the total wind supply and hydrogen storage system needed to meet that 
demand.  

T
ec

h
n

ic
al

 S
ce

n
ar

io
s 

Winebrake & 
Creswick 2003 

Uses the Analytic Hierarchy Process to explore the benefits and disadvantages of 
alternative fuel cell vehicle fuel configurations, and conducts a sensitivity analysis 
exploring how robust the findings are in the face of different dominant social 
values.  
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Table 6 
 
Caption:  
 
Table 6. Studies classified as ‘Visions’ 

 

 Study Brief description 
Arnason & 
Sigfusson 2000 

Describes a possible future for Iceland, based on hydrogen and renewably 
produced methanol. 

Bockris 1999 Describes a solar-hydrogen future for the US 
Bossel et al. 
2003 

Presents an argument against the use of hydrogen as a fuel, and provides a 
possible alternative – a synthetic liquid hydrocarbon economy. 

Dunn 2001 
Presents hydrogen as the fuel of the future, and describes a vision of what a 
hydrogen economy will involve. 

Goltsov & 
Veziroglu 2001 

Presents a vision of the ‘hydrogen civilisation’, a future world posed as the only 
alternative to continued dependence on fossil fuels. 

Lovins & 
Williams 1999 

Describes a future hydrogen economy, and outlines some of the components of 
the transition, in the form of super-efficient vehicles and synergy between mobile 
and stationary power. 

Rifkin 2002 
Outlines a decentralised and democratic vision of the future for hydrogen and 
energy, drawing parallels with the internet, and introducing the concept of the 
‘hydrogen energy web’. 

V
is

io
n
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Schwartz & 
Randall 2003 

Draws a parallel between the Apollo programme to put a man on the moon, and 
the challenge of energy independence and hydrogen; describes how hydrogen 
could become the dominant fuel within a decade. 
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Table 7.  
 
Caption:  
 
Table 7. Studies classified as ‘Backcasts & Pathways’ 

 Study Brief description 
California 
Fuel Cell 
Partnership 
2001 

Outlines criteria for defining successful commercialisation, and then explores 
specific barriers and threats to achieving that success, and four possible transition 
pathways based on four different fuels: hydrogen, methanol, gasoline, and ethanol. 

Foley 2001 
Explores policies and pathways by which hydrogen might be introduced into 
transport. 

Fuel Cells UK 
2003 

Presents a vision of the future for fuel cells in the UK, and explores the important 
trends that will set the context for the transition towards that vision.  

Mauro et al. 
1996 

Presents two alternative transition routes to a hydrogen economy, a centralised 
route, and a decentralised ‘village path’, exploring the potential for off-grid and 
remote community applications. 

Owen & 
Gordon 2002 

Technical analysis of two routes towards commercially viable fuel cell vehicles, and 
evaluation of the alternative routes in terms of well-to-wheels carbon emissions.  B

ac
kc

as
ts

 &
 P

at
h

w
ay

s 

Wurster 2002 Explores how a hydrogen refuelling infrastructure might develop. 
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Table 8.  

Caption:  

Table 8. Studies classified as ‘Roadmaps’ 

 Study Brief description 
DTI 2004 

Outlines the actions and decision points for the development of hydrogen 
technologies 

EST 2002 
Outlines steps that need to be taken in 2005, 2010, and 2020 in order to achieve low 
carbon transport in the UK. 

Fuel Cells 
Canada 2003 

Stakeholder workshop process used to generate targets and milestones in key areas 
for fuel cell development, and to develop a strategic action plan outlining specific 
measures. 

Greater London 
Authority 2002 

Describes a series of actions for the Greater London Authority to promote the 
development of hydrogen in London. 

Hynet 2004 
Builds on a hydrogen vision for Europe, and outlines timelines and necessary action 
for the visions to be realised. 

NHA 2004 
A study based on workshops to identify key goals for hydrogen commercialisation, 
and barriers and solutions to those goals, in order to produce a realistic and 
plausible roadmap for hydrogen development.   

Toshiaki 2003 
Presentation outlining Japan’s strategic targets for fuel cell and hydrogen 
development. 

R
o
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m
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US Department 
of Energy 2002 

Roadmap developed through stakeholder workshop process, outlining key targets 
and milestones in the development of a US hydrogen economy. 
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Captions to Illustrations 
 
 
Figure 1.  Shows common building blocks of a decentralised hydrogen production systems. 

Text size of each building block indicates the number of studies that envisage a role 
for it. Key technologies: Small scale electrolysis and Steam Methane Reforming of 
natural gas (SMR), renewables, ‘energy station’ stationary systems, Fuel Cell 
Vehicles (FCVs). 

 
 
 
 
Figure 2.  Shows common building blocks of a centralised hydrogen production systems. Text 

size of each building block indicates the number of studies that envisage a role for 
it. Key Technologies: Carbon sequestration, Pipelines, renewables, biomass, FCVs, 
Stationary fuel cells. 

 
 
 
 
Figure 3.  Shows estimated dates for a transition to a fuel cell based transport system. 
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