7 research outputs found

    Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

    Get PDF
    DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity

    Double-Stranded RNA Adenosine Deaminase ADAR-1-Induced Hypermutated Genomes among Inactivated Seasonal Influenza and Live Attenuated Measles Virus Vaccines▿

    No full text
    We sought to examine ADAR-1 editing of measles and influenza virus genomes derived from inactivated seasonal influenza and live attenuated measles virus vaccines grown on chicken cells as the culture substrate. Using highly sensitive 3DI-PCR (R. Suspène et al., Nucleic Acids Res. 36:e72, 2008), it was possible to show that ADAR-1 could hyperdeaminate adenosine residues in both measles virus and influenza virus A genomes. Detailed analysis of the dinucleotide editing context showed preferences for 5′ArA and 5′UrA, which is typical of editing in mammalian cells. The hyperedited mutant frequency, including genomes and antigenomes, was a log greater for influenza virus compared to measles virus, suggesting a greater sensitivity to restriction by ADAR-1

    Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients

    No full text
    International audienceObjectives: There is little known about the impact of SARS-CoV-2 on patients with inflammatory rheumatic and musculoskeletal diseases (iRMD). We examined epidemiological characteristics associated with severe disease, then with death. We also compared mortality between patients hospitalised for COVID-19 with and without iRMD.Methods: Individuals with suspected iRMD-COVID-19 were included in this French cohort. Logistic regression models adjusted for age and sex were used to estimate adjusted ORs and 95% CIs of severe COVID-19. The most significant clinically relevant factors were analysed by multivariable penalised logistic regression models, using a forward selection method. The death rate of hospitalised patients with iRMD-COVID-19 (moderate-severe) was compared with a subset of patients with non-iRMD-COVID-19 from a French hospital matched for age, sex, and comorbidities.Results: Of 694 adults, 438 (63%) developed mild (not hospitalised), 169 (24%) moderate (hospitalised out of the intensive care unit (ICU) and 87 (13%) severe (patients in ICU/deceased) disease. In multivariable imputed analyses, the variables associated with severe infection were age (OR=1.08, 95% CI: 1.05-1.10), female gender (OR=0.45, 95% CI: 0.25-0.80), body mass index (OR=1.07, 95% CI: 1.02-1.12), hypertension (OR=1.86, 95% CI: 1.01-3.42), and use of corticosteroids (OR=1.97, 95% CI: 1.09-3.54), mycophenolate mofetil (OR=6.6, 95% CI: 1.47-29.62) and rituximab (OR=4.21, 95% CI: 1.61-10.98). Fifty-eight patients died (8% (total) and 23% (hospitalised)). Compared with 175 matched hospitalised patients with non-iRMD-COVID-19, the OR of mortality associated with hospitalised patients with iRMD-COVID-19 was 1.45 (95% CI: 0.87-2.42) (n=175 each group).Conclusions: In the French RMD COVID-19 cohort, as already identified in the general population, older age, male gender, obesity, and hypertension were found to be associated with severe COVID-19. Patients with iRMD on corticosteroids, but not methotrexate, or tumour necrosis factor alpha and interleukin-6 inhibitors, should be considered as more likely to develop severe COVID-19. Unlike common comorbidities such as obesity, and cardiovascular or lung diseases, the risk of death is not significantly increased in patients with iRMD

    Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients

    No full text
    International audienceObjectives: There is little known about the impact of SARS-CoV-2 on patients with inflammatory rheumatic and musculoskeletal diseases (iRMD). We examined epidemiological characteristics associated with severe disease, then with death. We also compared mortality between patients hospitalised for COVID-19 with and without iRMD.Methods: Individuals with suspected iRMD-COVID-19 were included in this French cohort. Logistic regression models adjusted for age and sex were used to estimate adjusted ORs and 95% CIs of severe COVID-19. The most significant clinically relevant factors were analysed by multivariable penalised logistic regression models, using a forward selection method. The death rate of hospitalised patients with iRMD-COVID-19 (moderate-severe) was compared with a subset of patients with non-iRMD-COVID-19 from a French hospital matched for age, sex, and comorbidities.Results: Of 694 adults, 438 (63%) developed mild (not hospitalised), 169 (24%) moderate (hospitalised out of the intensive care unit (ICU) and 87 (13%) severe (patients in ICU/deceased) disease. In multivariable imputed analyses, the variables associated with severe infection were age (OR=1.08, 95% CI: 1.05-1.10), female gender (OR=0.45, 95% CI: 0.25-0.80), body mass index (OR=1.07, 95% CI: 1.02-1.12), hypertension (OR=1.86, 95% CI: 1.01-3.42), and use of corticosteroids (OR=1.97, 95% CI: 1.09-3.54), mycophenolate mofetil (OR=6.6, 95% CI: 1.47-29.62) and rituximab (OR=4.21, 95% CI: 1.61-10.98). Fifty-eight patients died (8% (total) and 23% (hospitalised)). Compared with 175 matched hospitalised patients with non-iRMD-COVID-19, the OR of mortality associated with hospitalised patients with iRMD-COVID-19 was 1.45 (95% CI: 0.87-2.42) (n=175 each group).Conclusions: In the French RMD COVID-19 cohort, as already identified in the general population, older age, male gender, obesity, and hypertension were found to be associated with severe COVID-19. Patients with iRMD on corticosteroids, but not methotrexate, or tumour necrosis factor alpha and interleukin-6 inhibitors, should be considered as more likely to develop severe COVID-19. Unlike common comorbidities such as obesity, and cardiovascular or lung diseases, the risk of death is not significantly increased in patients with iRMD

    COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study

    No full text
    International audienceBackground: Various observations have suggested that the course of COVID-19 might be less favourable in patients with inflammatory rheumatic and musculoskeletal diseases receiving rituximab compared with those not receiving rituximab. We aimed to investigate whether treatment with rituximab is associated with severe COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases.Methods: In this cohort study, we analysed data from the French RMD COVID-19 cohort, which included patients aged 18 years or older with inflammatory rheumatic and musculoskeletal diseases and highly suspected or confirmed COVID-19. The primary endpoint was the severity of COVID-19 in patients treated with rituximab (rituximab group) compared with patients who did not receive rituximab (no rituximab group). Severe disease was defined as that requiring admission to an intensive care unit or leading to death. Secondary objectives were to analyse deaths and duration of hospital stay. The inverse probability of treatment weighting propensity score method was used to adjust for potential confounding factors (age, sex, arterial hypertension, diabetes, smoking status, body-mass index, interstitial lung disease, cardiovascular diseases, cancer, corticosteroid use, chronic renal failure, and the underlying disease [rheumatoid arthritis vs others]). Odds ratios and hazard ratios and their 95% CIs were calculated as effect size, by dividing the two population mean differences by their SD. This study is registered with ClinicalTrials.gov, NCT04353609.Findings: Between April 15, 2020, and Nov 20, 2020, data were collected for 1090 patients (mean age 55·2 years [SD 16·4]); 734 (67%) were female and 356 (33%) were male. Of the 1090 patients, 137 (13%) developed severe COVID-19 and 89 (8%) died. After adjusting for potential confounding factors, severe disease was observed more frequently (effect size 3·26, 95% CI 1·66-6·40, p=0·0006) and the duration of hospital stay was markedly longer (0·62, 0·46-0·85, p=0·0024) in the 63 patients in the rituximab group than in the 1027 patients in the no rituximab group. 13 (21%) of 63 patients in the rituximab group died compared with 76 (7%) of 1027 patients in the no rituximab group, but the adjusted risk of death was not significantly increased in the rituximab group (effect size 1·32, 95% CI 0·55-3·19, p=0·53).Interpretation: Rituximab therapy is associated with more severe COVID-19. Rituximab will have to be prescribed with particular caution in patients with inflammatory rheumatic and musculoskeletal diseases
    corecore