263 research outputs found

    Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk

    Get PDF
    Background Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito’s geographical distribution. Results We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated. Conclusions Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority

    Mapping the zoonotic niche of Marburg virus disease in Africa.

    Get PDF
    BACKGROUND: Marburg virus disease (MVD) describes a viral haemorrhagic fever responsible for a number of outbreaks across eastern and southern Africa. It is a zoonotic disease, with the Egyptian rousette (Rousettus aegyptiacus) identified as a reservoir host. Infection is suspected to result from contact between this reservoir and human populations, with occasional secondary human-to-human transmission. METHODS: Index cases of previous human outbreaks were identified and reports of infection in animals recorded. These data were modelled within a species distribution modelling framework in order to generate a probabilistic surface of zoonotic transmission potential of MVD across sub-Saharan Africa. RESULTS: Areas suitable for zoonotic transmission of MVD are predicted in 27 countries inhabited by 105 million people. Regions are suggested for exploratory surveys to better characterise the geographical distribution of the disease, as well as for directing efforts to communicate the risk of practices enhancing zoonotic contact. CONCLUSIONS: These maps can inform future contingency and preparedness strategies for MVD control, especially where secondary transmission is a risk. Coupling this risk map with patient travel histories could be used to guide the differential diagnosis of highly transmissible pathogens, enabling more rapid response to outbreaks of haemorrhagic fever

    Vulnerability to snakebite envenoming: a global mapping of hotspots.

    Get PDF
    BACKGROUND Snakebite envenoming is a frequently overlooked cause of mortality and morbidity. Data for snake ecology and existing snakebite interventions are scarce, limiting accurate burden estimation initiatives. Low global awareness stunts new interventions, adequate health resources, and available health care. Therefore, we aimed to synthesise currently available data to identify the most vulnerable populations at risk of snakebite, and where additional data to manage this global problem are needed. METHODS We assembled a list of snake species using WHO guidelines. Where relevant, we obtained expert opinion range (EOR) maps from WHO or the Clinical Toxinology Resources. We also obtained occurrence data for each snake species from a variety of websites, such as VertNet and iNaturalist, using the spocc R package (version 0.7.0). We removed duplicate occurrence data and categorised snakes into three groups: group A (no available EOR map or species occurrence records), group B (EOR map but <5 species occurrence records), and group C (EOR map and ≥5 species occurrence records). For group C species, we did a multivariate environmental similarity analysis using the 2008 WHO EOR maps and newly available evidence. Using these data and the EOR maps, we produced contemporary range maps for medically important venomous snake species at a 5 × 5 km resolution. We subsequently triangulated these data with three health system metrics (antivenom availability, accessibility to urban centres, and the Healthcare Access and Quality [HAQ] Index) to identify the populations most vulnerable to snakebite morbidity and mortality. FINDINGS We provide a map showing the ranges of 278 snake species globally. Although about 6·85 billion people worldwide live within range of areas inhabited by snakes, about 146·70 million live within remote areas lacking quality health-care provisioning. Comparing opposite ends of the HAQ Index, 272·91 million individuals (65·25%) of the population within the lowest decile are at risk of exposure to any snake for which no effective therapy exists compared with 519·46 million individuals (27·79%) within the highest HAQ Index decile, showing a disproportionate coverage in reported antivenom availability. Antivenoms were available for 119 (43%) of 278 snake species evaluated by WHO, while globally 750·19 million (10·95%) of those living within snake ranges live more than 1 h from population centres. In total, we identify about 92·66 million people living within these vulnerable geographies, including many sub-Saharan countries, Indonesia, and other parts of southeast Asia. INTERPRETATION Identifying exact populations vulnerable to the most severe outcomes of snakebite envenoming at a subnational level is important for prioritising new data collection and collation, reinforcing envenoming treatment, existing health-care systems, and deploying currently available and future interventions. These maps can guide future research efforts on snakebite envenoming from both ecological and public health perspectives and better target future estimates of the burden of this neglected tropical disease

    Integrating vector control across diseases

    Get PDF
    Background: Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. Discussion: The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of ‘accidental’ cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world’s population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Summary: Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available

    Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission.

    Get PDF
    BACKGROUND: Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. METHODS: Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. RESULTS: Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. CONCLUSIONS: These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation

    Methodological choices in brucellosis burden of disease assessments: A systematic review

    Get PDF
    Background Foodborne and zoonotic diseases such as brucellosis present many challenges to public health and economic welfare. Increasingly, researchers and public health institutes use disability-adjusted life years (DALYs) to generate a comprehensive comparison of the population health impact of these conditions. DALYs calculations, however, entail a number of methodological choices and assumptions, with data gaps and uncertainties to accommodate. Thisreview identifies existing brucellosis burden of disease studies and analyzes their methodological choices, assumptions, and uncertainties. It supports the Global Burden of Animal Diseases programme in the development of a systematic methodology to describe the impact of animal diseases on society, including human health. Methods/Principal findings A systematic search for brucellosis burden of disease calculations was conducted in pre-selected international and grey literature databases. Using a standardized reporting framework, we evaluated each estimate on a variety of key methodological assumptions necessary to compute a DALY. Fourteen studies satisfied the inclusion criteria (human brucellosis and quantification of DALYs). One study reported estimates at the global level, the rest were national or subnational assessments. Data regarding different methodological choices were extracted, including detailed assessments of the adopted disease models. Most studies retrieved brucellosis epidemiological data from administrative registries. Incidence data were often estimated on the basis of laboratory-confirmed tests. Not all studies included mortality estimates (Years of Life Lost) in their assessments due to lack of data or the assumption that brucellosis is not a fatal disease. Only two studies used a model with variable health states and corresponding disability weights. The rest used a simplified singular health state approach. Wide variation was seen in the duration chosen for brucellosis, ranging from 2 weeks to 4.5 years, irrespective of the whether a chronic state was included. Conclusion Available brucellosis burden of disease assessments vary widely in their methodology and assumptions. Further research is needed to better characterize the clinical course of brucellosis and to estimate case-fatality rates. Additionally, reporting of methodological choices should be improved to enhance transparency and comparability of estimates. These steps will increase the value of these estimates for policy makers

    Slaying little dragons: the impact of the Guinea Worm Eradication Program on dracunculiasis disability averted from 1990 to 2016

    Get PDF
    Background: The objective of this study was to document the worldwide decline of dracunculiasis (Guinea worm disease, GWD) burden, expressed as disability-adjusted life years (DALYs), from 1990 to 2016, as estimated in the Global Burden of Disease study 2016 (GBD 2016). While the annual number of cases of GWD have been consistently reported by WHO since the 1990s, the burden of disability due to GWD has not previously been quantified in GBD.Methods: The incidence of GWD was modeled for each endemic country using annual national case reports. A literature search was conducted to characterize the presentation of GWD, translate the clinical symptoms into health sequelae, and then assign an average duration to the infection. Prevalence measures by sequelae were multiplied by disability weights to estimate DALYs.Results: The total DALYs attributed to GWD across all endemic countries (n=21) in 1990 was 50,725 (95% UI: 35,265–69,197) and decreased to 0.9 (95% UI: 0.5–1.4) in 2016. A cumulative total of 12,900 DALYs were attributable to GWD from 1990 to 2016.Conclusions: Using 1990 estimates of burden propagated forward, this analysis suggests that between 990,000 to 1.9 million DALYs have been averted as a result of the eradication program over the past 27 year

    Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings.

    Get PDF
    BACKGROUND: The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. METHODS: Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. RESULTS: Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. CONCLUSIONS: Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics
    • …
    corecore