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The primary aim of this review was to evaluate the state of knowledge of

the geographical distribution of all infectious diseases of clinical significance

to humans. A systematic review was conducted to enumerate cartographic

progress, with respect to the data available for mapping and the methods

currently applied. The results helped define the minimum information

requirements for mapping infectious disease occurrence, and a quantitative

framework for assessing the mapping opportunities for all infectious diseases.

This revealed that of 355 infectious diseases identified, 174 (49%) have a strong

rationale for mapping and of these only 7 (4%) had been comprehensively

mapped. A variety of ambitions, such as the quantification of the global

burden of infectious disease, international biosurveillance, assessing the like-

lihood of infectious disease outbreaks and exploring the propensity for

infectious disease evolution and emergence, are limited by these omissions.

An overview of the factors hindering progress in disease cartography is pro-

vided. It is argued that rapid improvement in the landscape of infectious

diseases mapping can be made by embracing non-conventional data sources,

automation of geo-positioning and mapping procedures enabled by machine

learning and information technology, respectively, in addition to harnessing

labour of the volunteer ‘cognitive surplus’ through crowdsourcing.
1. Introduction
The primary goal of this review is to establish the minimum set of information

that is needed on the epidemiology of an infectious disease, to make an

informed decision on the most appropriate techniques for mapping its global

distribution. The assessment is intended to be applicable to all infectious dis-

eases of clinical significance in humans, but makes no attempt to prioritize

the case for mapping among the diseases considered.

More than 1400 species of infectious agents have been reported to cause

disease in humans [1–3]. These include pathogens for some 347 diseases of sus-

tained clinical importance, for which it is commercially viable to compile

information relevant to their diagnosis, epidemiology and therapy, as a

decision-support tool for clinicians [4,5]. Logistical constraints required a

focus in this review on these clinically important diseases. Among these there

are 110 diseases that pose a threat to non-immune travellers [4]. Sixty-two of

these clinically significant diseases can be prevented by vaccination; 19 usually

as routine childhood immunizations [4,6,7].

There are a variety of reasons for wanting to map the geographical distri-

bution of an infectious disease. Mapping is a primary goal in spatial

epidemiology [8–16]. Maps of disease distribution and intensity allow an

immediate visualization of the extent and magnitude of the public health
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problem. When based on empirical evidence, maps can sup-

port carefully weighted assessments by decision makers on

the advantages and disadvantages of alternative courses of

action [17–19]. These may range from helping plan national

scale intervention strategies [20,21] to advice for individuals

on whether to vaccinate and/or provide prophylaxis before

travel [6,22]. These maps can also document a baseline

from which intervention success or failure can be monitored.

In addition, as modes of data gathering evolve and

improve (for example, through enhanced electronic surveil-

lance [17] and Internet-based health reporting [23],

including HealthMap/ProMED [24,25], BioCaster [26,27]

and Argus [28,29]) and techniques develop to exploit these

data (for example, semi-automated rapid mapping), these

geographical distributions (often referred to in this literature

as baseline disease risk assessments) can also provide a

‘normal’ against which real-time outbreak alerts can be

assessed for international biosurveillance [30–32].

Furthermore, as the portfolio of infectious disease distri-

bution maps expands and their fidelity improves, the

public health community will be better able to evaluate the

factors that predispose a time and place to the origin

[33,34], and emergence of infectious disease outbreaks

[3,35–42]. Unfortunately, contemporary inferences about

the fundamental ecology of infectious diseases (such as

decreased species richness [43] and increased range size

[44] with latitude and their potential for spread [45,46]) are

crude spatially because they rely on data not systematically

collected for this purpose and aggregated to the national

level [4]. Ultimately, this improved basic understanding

will help mitigate the processes that drive the diversity of

infectious disease threats with which we contend [47].

There is, therefore, a clear need to perform baseline risk

assessments for routine public health, improve biosurveillance

and provide better long-term preparedness by improving

fundamental epidemiological understanding [31].

An understanding of the public health benefit of the

mapping of infectious disease is not new [48–50] and selected

old examples for malaria include these references [51–55]. His-

torical disease cartography usually suffered at least one of the

following problems. First, authors very rarely documented

the evidence-base that was used to make the map. Second,

when mapping was implemented before the advent of geo-

graphical information systems, significant errors arose simply

as a function of cartographic skill. These errors were magnified

enormously when working at global scales. Third, no assess-

ment of the fidelity of the map or how this precision might

vary spatially across the map extent was ever given. These

limitations constrained significantly the public health utility

of the maps and are to a greater or lesser extent resolved in

many of the contemporary mapping efforts reviewed here.

Today, there are a range of different geographical distri-

butions or baseline ‘risk’ maps available [56], which have

been derived for a variety of purposes, by a wide community

of public health cartographers using a diverse toolbox of map-

ping methods [8–16]. Moreover, the maps use a variety of

disease-related metrics (occurrence, incidence, prevalence),

and an even wider array of covariates to inform the predictions

[8,57,58]. This complexity means that global comparisons

between maps of different diseases are extremely difficult

and wider synthesis remains elusive. In part, this review

aims to help audit and navigate this diversity and the sup-

plemental information provides an extensive bibliography
arising from a systematic review of all diseases of clinical

significance [4].

In this review, we also consider the minimum information

requirements for disease mapping. When considering carto-

graphic options for diseases of clinical importance, the first

question is: do we know the life cycle of the pathogen, its vec-

tors, reservoirs, hosts and routes of transmission? This

sounds trivial, but for many pathogens there is still consider-

able uncertainty around the life history. Second, do we have

information about the spatial and temporal patterns of the

disease? Third, do we understand the dynamic processes of

transmission that determine the patterns we observe in

space and time? This level of detail will usually indicate

some intimate epidemiological knowledge of covariates

(temperature, rainfall, land use patterns, etc.), that can help

in understanding the spatial and temporal distribution of a

disease. Progression along this gradient of questions reflects

increased basic epidemiological understanding and, there-

fore, an increased ability to map the disease. Fourth, it is

important to know what quantity and quality of data are

available for mapping. It is self-evident that more high qual-

ity contemporary data leads to more robust maps. Many

obstacles exist that can make the relevant data scarce, how-

ever. For example, health-related data may be closely

protected by governments and other institutions or these

data may simply be scattered so widely in the formal litera-

ture that their systematic assembly is a significant logistical

challenge. Fifth, it is also important to know whether pre-

vious credible mapping efforts have been conducted. This

will help answer questions one through four and, broadly

speaking, the longer the history of robust mapping activities,

the increased likelihood of reliable mapping outcomes.

The ability to map a disease stems largely from the type

of data that are available for mapping [10,15]. The accuracy

of maps is then largely determined by the abundance, spatial

representativeness and heterogeneity of those data [59]. Point

data types used in disease mapping are generally geo-

referenced occurrence or prevalence records. Occurrence

data simply record an observation of a disease at a given

location and time, and are characteristic of the data provided

routinely by HealthMap/ProMED [24,25], BioCaster [26,27]

and Argus [28,29]. The other commonly recorded point

data are infection prevalence surveys, which not only locate

a disease in time and space, but also measure the infected

fraction of the sampled local population and thus, enable

the standard quantification of the ‘abundance’ of a disease.

This is often referred to as its endemicity [60]. An accurate

global representation of the contemporary endemicity of a

disease is a key achievement for infectious disease mapping,

because it affords a rich diversity of operationally important

public health inferences: for example, clinical burden [61,62]

and basic reproductive number estimation [18,63] to inform

national elimination feasibility assessment [20,64].

A wide range of approaches have been developed for

empirical modelling of species and disease distributions,

given data on point observations of occurrence [65], with

the objective of identifying the fundamental niche of the

target organism [66,67]. Of the plethora available, the boosted

regression trees (BRT) method [68,69] is selected by the

authors as a default for occurrence mapping. A schematic

overview of the occurrence mapping process is provided in

figure 1. This selection was based on a number of factors:

first, in a review of 16 species modelling methods, BRT was



(a)

(c)

(b)

(d )

(e)

Figure 1. A schematic overview of a niche/occurrence mapping process (for example boosted regression trees (BRT)) that uses pseudo-absence data guided by
expert opinion. Consensus based definitive extent layers of infectious disease occurrence at the national level (a) are combined with accurately geo-positioned
occurrence (presence) locations (b) to generate pseudo-absence data (c). The presence (b) and pseudo-absence data (c) are then used in the BRT analyses, alongside
a suite of environmental covariates (d ) to predict the probability of occurrence of the target disease (e).
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one of the top performing methods evaluated using the area

under the receiver operating characteristic curve (AUC) and

correlation statistics [16,70]; second, the method is flexible

in being able to accommodate different types of predictor

variables (e.g. continuous or categorical data); third, it is

easy to understand, implement and uses reliable, well docu-

mented and freely available R code [71]; and fourth, the

resulting maps are simple to interpret and include a ranked

list of environmental predictors. The authors also have exten-

sive experience with this technique after a global scale project

to map the distribution of the anophelines of public health

importance [72–76]. These references provide a detailed stat-

istical explanation and examples of how BRT was applied to

species distribution mapping.

Model-based geostatistics (MBG) [77,78] has recently

been more widely applied in infectious disease mapping

[17,79–83] and is the technique of choice where data allow.

There are several reasons for this. First, MBG deals explicitly

with the spatial (and with extension temporal) autocorrelation

of disease data; this is still widely ignored in occurrence

mapping. Second, MBG models can be configured to offer a

much more robust parameterization of factors that can affect

disease endemicity (such as age of the individuals sampled,

the diagnostic technique used, the influence of covariates

etc.). Third, by fitting the models using Bayesian inference,

outputs can be presented to show the full uncertainty of

the prediction in all parts of the predicted maps. The main

impediments to its wider use are the lack of bespoke software

with which to implement the models and its relatively large

computational burden.

We assume that advances with respect to occurrence

mapping or MBG techniques may modify our guidance

with regard to mapping techniques and elaborate on some

of the generic improvements that may be made in infectious
disease mapping in §4. Those we have favoured here are

proved methods that can be applied now.

In summary, the objective of this review is to formalize

the questions outlined in §1, in order to define rules for

advocating specific cartographic techniques for a baseline

risk assessment for each disease of clinical importance, and

then to assess to what level this mapping potential has

been realized. A substantial literature review has been

conducted to collate the data required to make those carto-

graphic suggestions evidence-based and is provided as

electronic supplementary material.
2. Material and methods
(a) Selection of infectious diseases of

clinical importance
A total of 347 infectious diseases of clinical importance were

selected for review based on the GIDEON database, accessed

November 2010. GIDEON is an infectious disease information

and diagnostic resource available online through subscription

that derives its content from a range of sources including formal

peer-reviewed journals and informal sources such as Ministry of

Health reports [4,5]. This list was then revised to 355 diseases

based on further re-definitions and decoupling of some groups.

These diseases were placed into one of 11 classifications based on

transmission type: animal contact, blood/body fluid contact,

direct contact, endogenous, food/water-borne, respiratory, sexual

contact, soil contact, unknown, vector-borne and water contact.

Revisions were as follows: mucosal and cutaneous leishma-

niasis were re-classified as cutaneous/mucosal leishmaniasis,

Old World and New World; the spotted fevers were also divided

into New and Old World to better differentiate between the var-

ious species of bacteria and ticks that spread the disease in

different parts of the world; malaria was split into Plasmodium



diseases of
clinical

significance
N=355

spatial variation
in occurrence

Option 1:
do not map

n = 181

Option 2: map
observed

occurrence
n = 64

Option 3: map
maximum potential

range
n = 32

Option 4: niche
mapping

(e.g. BRT)
n = 68

Option 5: model
based geostatistics

(MBG)
n = 10

high volume
reservoir data

geographic limits of disease extent

N

N Y Y Y N

N

N

N

understand ecology
high volume
disease data occurrence only prevalence

Y Y

Figure 2. A schematic of the disease classification process. The classification system results in diseases being categorized into one of five options: (1) do not map; (2)
map observed occurrence; (3) map maximum potential range of reservoir or vectors; (4) niche/occurrence mapping with BRT and (5) MGB-based endemicity maps.
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falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium
malariae, because variation in geographical range and epidemio-

logical patterns of these pathogenic species would be masked if

considered together; AIDS was removed and was combined

with HIV; conjunctivitis-inclusion was similarly removed, and

incorporated into trachoma; the umbrella term ‘adenovirus

infection’ was divided into acute febrile respiratory disease

(adenoviral), adenoviral haemorrhagic conjunctivitis, keratocon-

junctivitis (adenoviral) and adenovirus infection; similarly,

enterovirus infection was divided into enterovirus haemorrhagic

conjunctivitis and enterovirus infection; human herpesvirus 6

was renamed Roseola; sandfly fever was added because of its

possible impact on travellers; and avian influenza virus serotype

H5N1 was added because of its epidemic potential.
(b) Data assembly
(i) Natural history
Data were collected on the natural history of each infectious

agent. Information on the genus and species, disease reservoir,

vector species (if applicable), mode of transmission, incubation

period, vaccine (where relevant) and geographical distribution

was obtained using GIDEON. Taxonomic classifications were

supplemented by the Tree of Life Project (http://tolweb.org).

Further evidence regarding geographical distribution and vac-

cine development was found in the American Public Health

Association’s Control of Communicable Disease Manual [7].
(ii) Transmission dynamics
The basic reproduction number (R0) was used to quantify the

transmission potential of the various aetiological agents. The

R0 is defined as the average number of secondary infections pro-

duced when a single-infected individual is introduced into a

fully susceptible population [84–87]. A literature search was con-

ducted to obtain R0 values in humans and reservoirs of zoonotic

diseases. The search was carried out in PubMed (http://www.

pubmed.gov) using the terms ‘[disease name]’ and ‘reproduction

number’ in the ‘all fields’ search box in September 2011. The

search was then repeated replacing ‘reproduction number’ with

‘reproduction ratio’, ‘reproduction rate’, ‘reproductive number’,

‘reproductive ratio’ and ‘reproductive rate.’ That search pattern

was reiterated with ‘[Genus species]’ or ‘[diseases synonym]’
replacing ‘[disease name],’ if applicable. This procedure was also

performed in ISI-Web of Knowledge (http://isiwebofknowledge.

com) in the ‘title/keywords/abstract’ field. These searches often

produced few or no results and the entire search process would

be conducted again using Google Scholar (http://scholar.google.

co.uk). Data regarding R0 values and the reservoir species when

relevant were abstracted from references obtained, and if multiple

R0 estimates were reported among sources for a single disease, the

range of estimates was recorded. The range for all R0 estimates was

assumed to start from 0.

(iii) Thumbnail maps
To visualize the approximate endemic regions of a disease,

simple maps were constructed from the distribution data pro-

vided by GIDEON. A list of 275 global countries and

territories were coded as 1 for endemic and 0 for non-endemic

for each listed disease. The database was then imported into

ArcGIS 10 (ESRI 2010) and displayed as global maps at the

national level.

(iv) Occurrence data availability and quality
To determine the relative amount of information available for the

various infectious diseases, a search was done using only the dis-

ease name as the text term in PubMed on 4 November 2011 and

using the species name in GenBank on 1 March 2012 (for selected

diseases). Data on the number of feeds for each disease from the

start of data collection were received from HealthMap and

ProMED on 23 November 2011 and from BioCaster on 24 Febru-

ary 2012. Because only data from manual searches of PubMed

has, to our knowledge, been used in mapping, we base our ana-

lyses on PubMed figures only, but provide the potential data

from the other sources in the electronic supplementary material.

These may improve the prospects for mapping of many of the

diseases once the utility of these information sources has been

confirmed by experiment.

(c) Decision rules devised to categorize mapping
options

Decision rules were created for disease mapping options, shown

schematically in figure 2. The Option 1, do not map, classification

was used for those conditions which are known to occur

http://tolweb.org
http://tolweb.org
http://www.pubmed.gov
http://www.pubmed.gov
http://www.pubmed.gov
http://isiwebofknowledge.com
http://isiwebofknowledge.com
http://isiwebofknowledge.com
http://scholar.google.co.uk
http://scholar.google.co.uk
http://scholar.google.co.uk
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worldwide, and hence do not show sustained spatial variation in

occurrence. The diseases within this category range from sexu-

ally transmitted diseases such as Chlamydia, viral agents such

as Epstein–Barr Virus or rhinoviruses causing the common

cold and endogenous diseases (infections caused by previously

dormant or inapparent pathogens, often from the typical com-

mensal microbial flora of humans—such as urinary tract

infections caused by Escherichia coli or brain abscesses by Staphy-
lococcus aureus). The incidence of these diseases may show

enormous spatial variation. These differences are linked often

to variation in human or human-related factors, however, and

are best mapped using techniques associated with the cartogra-

phy of non-infectious disease [88]. More traditional surveillance

within this cosmopolitan distribution, therefore, may have a

public health rationale and this is explored on a case by case

basis in the electronic supplementary material. For most of

these conditions, it would be useful to apply a simple mask

of human population density to give a more realistic picture of

where the disease is truly observed globally. Option 2, map the
observed occurrence, would apply to diseases that have few data

available and limited information regarding the disease ecology.

A cut-off of fewer than 25 PubMed hits per endemic country was

applied to designate a paucity of data for any operationally sig-

nificant disease. For example, Mayaro virus has 90 search results

on PubMed for 11 potentially endemic countries and, therefore,

only about eight results per country. There has also not been a

definitive reservoir host identified for Mayaro, which would be

needed for the following option. Option 3, map the maximum
potential range, is appropriate for a disease that also has fewer

than 25 PubMed results per country, but information is available

regarding reservoir or vector species that would place bound-

aries on the potential disease distribution, as is the case with

African tick bite fever with its known vector distribution. Map-

ping of the disease using ecological niche modelling, Option 4,

would implement BRT technology on observed occurrence data.

Adequate information regarding occurrence of disease (greater

than 25 PubMed hits per country) is needed to use this strategy.

This information would be usefully supplemented with infor-

mation on where the disease is not found, obtained through

systematic searches or derived by expert opinion maps. If the

authors were aware of systematic searches of occurrence data

that were significantly richer than the PubMed hits, these were

documented and the mapping option re-evaluated accordingly.

Option 5, the implementation of MBG to mapping, is reserved for

diseases that have more than 25 results per country of systemati-

cally recorded prevalence data. This strategy uses MBG for the

creation of complete endemicity maps with detailed uncertainty

metrics. The mapping option to be used is dependent on the

amount and nature of the disease data available, implying that

diseases currently classified for one option would be eligible

for a higher grade in the future as further data become available.
(d) Scoring the quality of existing mapping of the
geographical distribution of disease

It was also of critical interest to obtain information regarding

the extent to which the diseases had been previously mapped.

A search was again conducted in PubMed using the text terms

‘[disease name/synonym]’ and ‘map’ as well as ‘[disease name/

synonym]’ and ‘epidemiology,’ selecting for reviews in October

2011. If an excess of results were returned (more than 1000), this

was further narrowed using the search terms ‘distribution’ or

‘global.’ For diseases transmitted by a specific vector, the search

was repeated using the text terms ‘[vector species name]’ and

‘map.’ The same process was repeated for prominent reservoir

species. The search was also performed using ISI-Web of Knowl-

edge. Irrelevant references were removed from the search output,
and all references regarding the spatial temporal distribution of a

disease, vector or reservoir were checked to determine the par-

ameter mapped (for example, occurrence, prevalence, incidence,

or risk) and in what geographical region.

In order to allow for both relative and quantitative assess-

ment of each map, we devised a metascore, which evaluated

three criteria: data quality, geographical scope and the mapping

technique used.

Data quality (out of nine) was scored in three ways. (i) Con-

temporariness, where three points were awarded if data less than

10 years old was used, two points for the use of data greater than

or equal to 10 years to less than 20 years old, and one point for

data greater than 20 years old. If no age could be identified, no

points were given. For papers reporting a range of dates, the

score was based on the most recent, with the exception of

databases that provide country-specific estimates that were sur-

veyed across different time periods. In that case, an additional

half point (2.5) was given. (ii) Diagnostic accuracy, where three

points were awarded for the use of data diagnosed by genotype

or PCR, or in the case of vector maps, where advanced modelling

techniques had been used on a large number of occurrence

points. Two points were given to those studies that had used hos-

pital or national health surveys or confirmed case reports; an

additional half a point was gained if serological or immunologi-

cal data had been used. Vectors maps received two points if

simple interpolation techniques had been used on occurrence

data. One point was awarded if cited literature had been used.

One point was also given for unpublished health organization

data collected as part of routine health management information

systems (HMIS) or presumptive diagnosis, with a half point

given to non-specific numerical data. The use of expert opinion

in drawing vector maps was awarded one point. If the data

came from an unknown source, or was not listed in the article,

no points were awarded. (iii) Geo-positional accuracy, where

three points were awarded for the use of data coupled with

GPS coordinates, two points if survey coordinates could be

derived from supporting maps, or data was provided to admin-

istrative level 1; an additional half a point was earned if

administrative level 2 was used, or towns and villages were

specified. One point was gained if approximate coordinates of

unknown provenance or country level data was present. Expert

opinion ranges obtained from cited literature received half a

point. If no geo-positional data was associated with the map,

no points were awarded.

The geographical scope was scored out of 100. The GIDEON

endemic country lists for each disease were converted into

national populations at risk using the UN population data

from 2010 [89]. Each map was assessed for how many countries

were included (rounded up to the national level, to match the

resolution of GIDEON), and population covered was calculated

and expressed as a percentage (out of 100%) of the GIDEON

endemic total.

The mapping technique used (mapping option used/theor-

etically best mapping option) was calculated using the criteria

outlined above, each map was evaluated for the mapping

option used (for example, if BRT modelling techniques had

been used, the map was to Option 4 standard), and was related

to the potential mapping option that could be used, based upon

the amount and quality of data present for that disease. For

instance, if a map of Lassa fever (which is an Option 4 disease

owing to there being more than 25 PubMed hits per country)

only uses occurrence points (Option 2 standard), a score of 2/4

would be achieved.

The metascore was then calculated as the product of these

figures ([Quality]/9 � [Scope] � [Option Used]/[Option Poten-

tial]) resulting in a maximum of 100. Scores of greater than or

equal to 75 per cent were deemed to have evaluated the global

distribution of the specific disease to a satisfactory standard.



Table 1. The number of clinically important infectious diseases and the subset
of those with a rationale for mapping by transmission category (see §2).

classification

clinically
significant
diseases
(n 5 355)

diseases with
rationale for
mapping
(n 5 174)

animal contact 20 9

blood/body

fluid contact

14 5

direct contact 23 7

endogenousa 35 0

food/water-

borne

82 36

respiratory 39 9

sexual contact 11 2

soil contact 21 14

unknown 11 4

vector-borne 88 80

water contact 11 8
aEndogenous infections are those caused by previously inapparent or dormant
pathogens arising from the typical commensal microbial flora of humans.
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3. Results
The electronic supplementary material provides full details

of all the epidemiological and mapping evidence collated

and scored and the decision rules applied. The electronic sup-

plementary material includes a summary page on each of the

355 diseases with details of the natural history, transmission,

quantity of data available, quality of data from previously

published maps and recommendations for future mapping

endeavours. The information included on natural history

was the ICD-10 code, transmission classification (table 1),

type of pathogen (agent), taxonomic details, mode of trans-

mission, reservoir species (host organism that is a source of

infection or potential reinfection of humans) and incubation

period.

The epidemiological characteristics highlighted include

the vaccine availability, and estimates of the basic reproduc-

tion number (R0) in human and reservoir populations,

where applicable. A number of diseases (126) were con-

sidered to have an R0 value of less than 1 because they are

primarily zoonotic diseases. Citations were provided to sup-

port that transmission occurs mainly in animals. The R0

estimates ranged from point source outbreaks of diarrhoeal

diseases or less than 1 for zoonoses to 100 for P. vivax malaria

and Ross River virus and 1000 for P. falciparum malaria. Esti-

mates were not obtained for many of the reservoir species,

but for those that were found, the range was from 1.06 for

Old World mucocutaneous leishmaniasis in dogs to 28 for

West Nile fever virus in birds.

Occurrence details included information on the number

of PubMed and GenBank hits, relevant reports from Health-

Map, ProMED and BioCaster feeds, and the approximate

number of endemic countries. A table of previously pub-

lished maps was included incorporating information on
whether the map is of the disease, vector or host reservoir;

geographical scope; data quality score; mapping option

used; metascore; citation.

The option for future mapping (figure 2) was determined

using the PubMed hits returned and the number of endemic

countries per diseases (see the electronic supplementary

material). A total of 181/355 were classified as Option 1

(do not map); 64 were classified as Option 2 (map observed

occurrence); 32 were classified as Option 3 (map maximum

potential range); 68 were classified as Option 4 (map using

BRT) and 10 were classified as Option 5 (map using MBG).

There are trends within the diseases that have a strong

rationale for mapping. Unsurprisingly, endogenous diseases

exhibit little sustained spatial variation in occurrence,

whereas those transmission categories that are inherently

linked to some feature of the environment, or other factor

that varies on a global scale, such as vector-borne disease,

water contact and soil contact tend to show greater variation.

The remaining transmission types have just under half of

the diseases showing differing global patterns of distribution.

Similar trends are also apparent when we consider the occur-

rence of agents of disease—nearly two-thirds of diseases

caused by parasites show tendency to vary over a spatial

scale, as do 61 per cent of all viruses; on the other hand,

there is evidence for spatially variable distributions in only

28 per cent of bacteria. Clearly, these sets of results are

inherently linked; of the 61 viral diseases that would benefit

from having mapped distributions, 41 are vector-borne and

a further eight are soil contact; of those bacterial species

that are not endemic worldwide, about two-thirds are

vector-borne. Such a trend is not so apparent when consider-

ing parasitic diseases and their routes of transmission (many

are food/water-borne). This could be due to their require-

ments for external development, and thus potentially

environmentally determined life cycles.

Of the 174 diseases with strong rationale for mapping,

only seven had maps that scored higher or equal to 75 per

cent on the metascore. These were coltiviruses (Old World),

dengue, Lassa fever, Mayaro, monkey pox, P. falciparum
and P. vivax; all vector-borne diseases. Figure 3a shows

radial plots of all the 174 diseases with a rationale for map-

ping, as well as separate plots by agent (figure 3b–e). The

white line represents the highest scoring metascore for each

disease; the black space above each individual line equates

to the information deficit present.
4. Discussion
We have collated a significant amount of information on 355

diseases of clinical importance and have made evidence-

based suggestions on the appropriate cartographic approaches

to use in mapping each disease. These have been summarized

in the results and are elaborated for each disease in the elec-

tronic supplementary material. In the following sections, we

review some of the common omissions in existing maps and

look to novel data sources, new techniques and information

technology developments that may change the future land-

scape of infectious disease mapping.

This review has provided the opportunity to make some

preliminary observations on some of the common omissions

in infectious disease mapping that might be considered when

embarking on new cartographies. They are as follows.



(a) (b)

(d ) (e)

(c)

Figure 3. Radial plots for all diseases with a rationale for mapping, ordered clockwise, by metascore (white line). A white line from the centre to the edge of
the circle would show a perfect metascore. (a) Reflects all diseases (n ¼ 174 of 355), (b) viral diseases (n ¼ 62 of 101), (c) parasitic diseases (n ¼ 61 of 96),
(d ) bacterial diseases (n ¼ 36 of 128), and (e) comprises fungal (n ¼ 9 of 17), protoctistan (n ¼ 2 of 2) and diseases of unknown pathogen (n ¼ 4 of 10).
Note that there was one algal disease, which did not have a rationale for mapping and is not shown in this diagram.
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(a) Other relevant maps
The most consistent omission is the lack of additional

information that can provide significant epidemiological

insight—often referred to as ‘expert opinion’. These definitive

extent data can be an ad hoc collection for each disease that

may include information on biological and biogeographic

limits (often as range maps), as well as, further distribution

or occurrence data on intermediate and reservoir hosts.

There are several occurrence mapping methods that can use

this information, such as weighted forms of BRT that have

been trialled extensively with respect to the anophelines

[72–75] (figure 1). They do this by overcoming the biogeo-

graphic and taxonomic ignorance of all occurrence mapping

techniques that assume the globally realized niche approxi-

mates the fundamental niche. The careful use of definitive

extent data would substantially reduce the degree to which

inferences are required.
(b) Formalizing expert opinion
Further investigation is also advised on using the Cooke

method to help determine the importance ascribed to the

expert opinion [90,91]. Essentially these methods allow a

simple way to gauge the accuracy of an expert source by test-

ing their knowledge on a set of subject related questions to

which the answers are well known. For a cartographic pro-

blem set, this could be very easily formalized by rating

answers for a related disease we know the distribution of

extremely well. It may be possible to link this with BRT

and formalize the weights that are ascribed to other relevant

epidemiological information.
(c) Human population distribution
There is a systematic deficit in the use of human population

distribution maps [92,93], both as a mapping covariate and

for determining the population at risk of infection or the

reservoir of infection. Some effort may also be invested in

incorporating the latest human population surfaces into the

information suite. The diseases for which human population

distribution may help refine risk assessments, including both

those with a rationale for mapping and those ubiquitous

clinically important diseases for which the recommendation

was not to map, have been highlighted (see the electronic

supplementary material).

(d) Refining of environmental covariates
Most cartographic applications use environmental covariates

crudely without any adjustment to the epidemiology of the

diseases concerned. Where detailed information and exper-

iments on the environmental responses of a disease have

been conducted it has proved valuable to combine this with

the covariate. An example would be the way that temperature

data have been used not only to map the environmental

limits of P. falciparum and P. vivax globally [94], but have

also been transformed into indexes of transmission suit-

ability. These indexes were more strongly selected for by

the model than untransformed covariates in endemicity map-

ping. The diseases to which such advances may be relevant

are indicated (see the electronic supplementary material).

(e) Public health interventions
It is still rare for geographically specific intelligence on public

health interventions to be used in the mapping of diseases.



Table 2. The cartographically relevant holdings of the National Center for Biotechnology Information PubMed and GenBank systems. The searches were
conducted on 4 November 2011 and 1 March 2012, respectively.

system PubMed GenBank

start year 1946 [98] 1982 [99]

frequency of updates daily [98] Daily [100]

number of species catalogued .250 000 [100] .250 000 [100]

approximate number of entries 21 million [101] 340 million [100]

number of clinically relevant diseases for which data are available 168 155

occurrence point sources for mapping 526 564 672 327

Table 3. Geo-positioned occurrence data archived by the HealthMap and BioCaster online disease outbreak reporting systems. HealthMap uses automated text
processing to classify and position alerts that are then confirmed by a human analyst [25]. BioCaster has automated text processing to classify and position
alerts processed through a multilingual ontology [26]. The totals were assembled using data provided for HealthMap on 23 November 2011 and BioCaster on 24
February 2012.

system HealthMap BioCaster

start year 2006 2006

approximate posts per day 300 [24] 100 [29]

number of languages 10 (J. S. Brownstein 2012, personal communication) 11 [102]

number of diseases tagged 245 (J. S. Brownstein 2011, personal communication) 230 (N. Collier 2012, personal communication)

number of clinically relevant

diseases for which data are

available

84 of 245 99 of 230 (N. Collier 2012, personal

communication)

total occurrence points 337 105 (J. S. Brownstein 2011, personal

communication)

189 361 (N. Collier 2012, personal

communication)

occurrence point sources for mapping 66 284 (J. S. Brownstein 2011, personal

communication)

140 038 (N. Collier 2012, personal

communication)

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120250

8

Such information could be used in the same way as other

‘expert opinion’ data sources by BRT. Where human interven-

tions have significantly affected the distribution of a disease,

for example vaccine coverage in a population [95–97], this

has been identified. We have sought to identify those diseases

for which this information may be relevant but have not

searched systematically for the availability of relevant

public health information.

There are many potential novel data sources that may be

used for global infectious disease mapping. The resources

described below have never been used systematically to

address the paucity in occurrence data across the range of infec-

tious diseases reviewed. Substantial progress will be made

from exploiting the geospatial information in the formal litera-

ture (e.g. PubMed, www.ncbi.nlm.nih.gov/pubmed) and in

genetic and protein sequence databases (e.g. GenBank, www.

ncbi.nlm.nih.gov/genbank). The potential information avail-

able has been identified for each disease in the electronic

supplementary material and is further summarized in table 2.

Significant prospects for the rapid acquisition of occur-

rence data are also clearly possible from online outbreak

alert resources (i.e. HealthMap/ProMED [24,25], BioCaster

[26,27] and Argus [28,29] records). The potential information

available has been identified for each disease in the electronic

supplementary material and is further summarized in table 3

for those systems where data can be freely shared.
Finally, there is a revolution occurring in both the volume

and public availability of data about the health and wellbeing

of individuals and populations through various forms of social

media [103]; most notably Twitter (twitter.com). This is an

online social media site that allows users to post ‘Tweets’;

messages less than or equal to 140 characters which

are freely available to all. It took 3 years to reach the first

billion Tweets, but by March 2011, it took only a week to

reach one billion posts and 140 million Tweets are now

posted daily with an increasing number of them automatically

geo-positioned. This wealth of accurately geo-positioned infor-

mation has already begun to be harvested for public health

purposes. Twitter feeds surrounding the 2009 H1N1 flu out-

break were analysed and found to predict outbreaks one to

two weeks in advance of traditional surveillance [104,105].

Tweets can also be analysed to identify a broader range

of health-related terms such as symptoms, syndromes and

treatments to illuminate geographical patterns in syndrome

surveillance [106].

Our optimism about the future use of social media is

tempered by the realization that the main contemporary

issue in disease mapping, of dealing with the lack of relevant

data, will subside, and that our new challenges will be infor-

matics, developing systems and processes to take on the

big data challenges of the future. This is discussed in the

following section.

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
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There are also many novel techniques that may be used to

improve the prospects of global infectious disease mapping,

notably automation through machine learning and harnes-

sing the cognitive surplus. In the defined schema (figure 2),

it is more logistically and technically difficult (and thus

expensive) to map diseases from Option 1 (do not map)

through to Option 5 (map endemicity with MBG). It is also

more expensive to deal with conditions for which data retrie-

val is a significant logistical obstacle. This will be directly

proportional to the number of PubMed and other (see earlier)

data source hits identified.

The HealthMap and BioCaster systems have pioneered

machine learning algorithms that automatically classify rel-

evant reports, identify the infectious disease of interest and

determine the geographical location of the outbreak. Scaling

these to cope with this potential data deluge is a non-trivial

but largely technical problem. Ideally, the results of this process

should be audited and verified by subject matter experts but this

is non-scalable, time consuming and prohibitively expensive.

As an alternative, developments in social computing have

led to increased interest in using large numbers of non-experts

as a cheaper and scalable method for data filtering: the

so-called crowdsourcing or distributed cognition [107,108].

Currently established ways to crowdsource exist (i) framing fil-

tering tasks as fun online games, incentivizing users to filter

data for free [109] and (ii) posting the task online and seeking

non-experts using a pay-per-example setting as pioneered by

the Amazon Mechanical Turk system [110,111]. The central

idea is that, if questions can be structured in a simple and intui-

tive way, and presented to a large number of individuals, the

central tendency of responses is likely to provide an accurate

answer. Crowdsourcing is particularly appealing in the con-

text of filtering social media disease reports because of the

non-expert nature of key components of the task, such as

geo-positioning. Crowdsourcing is not, of course, a panacea

for data filtering. The reliability of contributors must be

quantitatively assessed and iteratively adjusted for, again
with reference to a gold-standard reference set of externally

validated results.

In conclusion, this systematic review has shown that we

have an astonishingly poor knowledge of the global distri-

bution of the vast majority of infectious diseases of clinical

importance. Less than 5 per cent of clinically important infec-

tious diseases have been mapped reliably. This presents clear

obstacles to advances in determining the global burden of

these conditions, our ability to differentiate outbreaks of con-

cern in international biosurveillance, and our ability to

understand the geographical determinants of disease emer-

gence, past, present and future. We have shown that

contemporary solutions exist to enable us to use new data

and new technology to rapidly improve the cartography of

a wide range of clinically important pathogens. Few concep-

tual barriers exist to making rapid progress and to ‘seeing

further’ into the relatively unknown landscape of infectious

disease mapping.
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Defense hosted meeting on infectious disease modelling (23–25 Jan-
uary 2011, Knoxville, TN, USA). NIMBioS also provided K.E.B. with
resources to conduct the literature review. S.I.H. is financially sup-
ported by a Senior Research Fellowship from the Wellcome Trust
(no. 095066) which also supports P.W.G., K.E.B. and D.M.P.; S.I.H.,
D.L.S. and D.B.G. also acknowledge support from the RAPIDD pro-
gramme of the Science & Technology Directorate, Department of
Homeland Security, and the Fogarty International Center, National
Institutes of Health (http://www.fic.nih.gov). This work also forms
part of the output of the Malaria Atlas Project (MAP, http://www.
map.ox.ac.uk), principally financially supported by the Wellcome
Trust, UK (http://www.wellcome.ac.uk). The funders had no role
in study design, data collection and analysis, decision to publish,
or preparation of the manuscript. Thanks are extended to Dr Kevin
Hanson and Prof. Louis Gross for insightful comments, to the
Global Infectious Diseases and Epidemiology Network (GIDEON)
for permission to reproduce their data within the 355 maps of the
supplementary material. Finally, we are grateful to the editors
Dr Oliver Pybus, Prof. Christophe Fraser and Prof. Andrew Rambaut
for inviting us to participate in the scientific discussion meeting.
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