422 research outputs found

    Multivariate Random Effect Models with complete and incomplete data

    Get PDF
    This paper considers the problem of estimating fixed effects, random effects and variance components for the multi-variate random effects model with complete and incomplete data. It also considers making inference about the fixed and random effects, a problem which requires careful consideration of the choice of degrees of freedom to use in confidence intervals. This paper uses the EM algorithm to maximise the hierachical likelihood (HL). The HL estimates are often the same as the REML and Bayesian-justified estimates in Shah, Laird, and Schoenfeld (1997). A key benefit of the h-likelihood approach is its simplicity- it doesn’t require integrating over the random effects or use of priors for its justification. Another benefit is that all inference can be made within a single framework. Extensive simulations show: that the h-likelihood approach is significantly more accurate than the well-known ANOVA approach; the h-likelihood approach often recovers a lot of the information lost through missing data; the h-likelihood approach has good coverage properties for fixed and random effects that are estimated using small samples

    Robust 3D U-Net Segmentation of Macular Holes

    Get PDF
    Macular holes are a common eye condition which result in visual impairment. We look at the application of deep convolutional neural networks to the problem of macular hole segmentation. We use the 3D U-Net architecture as a basis and experiment with a number of design variants. Manually annotating and measuring macular holes is time consuming and error prone. Previous automated approaches to macular hole segmentation take minutes to segment a single 3D scan. Our proposed model generates significantly more accurate segmentations in less than a second. We found that an approach of architectural simplification, by greatly simplifying the network capacity and depth, exceeds both expert performance and state-of-the-art models such as residual 3D U-Nets

    Assessing Dose-Exposure-Response Relationships of Miltefosine in Adults and Children using Physiologically-Based Pharmacokinetic Modeling Approach.

    Get PDF
    Miltefosine is the first and only oral medication to be successfully utilized as an antileishmanial agent. However, the drug is associated with differences in exposure patterns and cure rates among different population groups e.g. ethnicity and age (i.e., children v adults) in clinical trials. In this work, mechanistic population physiologically-based pharmacokinetic (PBPK) models have been developed to study the dose-exposure-response relationship of miltefosine in in silico clinical trials and evaluate the differences in population groups, particularly children and adults. The Simcyp population pharmacokinetics platform was employed to predict miltefosine exposure in plasma and peripheral blood mononuclear cells (PBMCs) in a virtual population under different dosing regimens. The cure rate of a simulation was based on the percentage of number of the individual virtual subjects with AUC  > 535 µg⋅day/mL in the virtual population. It is shown that both adult and paediatric PBPK models of miltefosine can be developed to predict the PK data of the clinical trials accurately. There was no significant difference in the predicted dose-exposure-response of the miltefosine treatment for different simulated ethnicities under the same dose regime and the dose-selection strategies determined the clinical outcome of the miltefosine treatment. A lower cure rate of the miltefosine treatment in paediatrics was predicted because a lower exposure of miltefosine was simulated in virtual paediatric in comparison with adult virtual populations when they received the same dose of the treatment. The mechanistic PBPK model suggested that the higher fraction of unbound miltefosine in plasma was responsible for a higher probability of failure in paediatrics because of the difference in the distribution of plasma proteins between adults and paediatrics. The developed PBPK models could be used to determine an optimal miltefosine dose regime in future clinical trials. [Abstract copyright: © 2023. The Author(s).

    ARL3 mutations cause Joubert syndrome by disrupting ciliary protein composition

    Get PDF
    Joubert syndrome (JBTS) is a genetically heterogeneous autosomal recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTSrelated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128 (hg 19)), and exome sequencing revealed two missense variants in ARL3 within the candidate locus. The encoded protein, ADP Ribosylation Factor-Like GTPase 3, ARL3, is a small GTP-binding protein that is involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E and NPHP3 localisation in cilia. We propose that ARL3 provides a potential hub in the network of encoded ciliopathy genes, whereby perturbation of ARL3 results in the mislocalisation of multiple ciliary proteins due to abnormal displacement of lipidated protein cargo

    Optimizing single-mode collection from pointlike sources of single photons with adaptive optics

    Get PDF
    Army Research Office MURI on Hybrid Quantum Interactions Program W911NF09104.The collection efficiency of light from a point-like emitter may be extremely poor due to aberrations induced by collection optics and the emission distribution of the source. Analyzing the aberrant wavefront (e.g., with a Shack-Hartmann sensor) and correcting accordingly can be infeasible on the single-photon level. We present a technique that uses a genetic algorithm to control a deformable mirror for correcting wavefront aberrations in single-photon signals from point emitters. We apply our technique to both a simulated point source and a real InAs quantum dot, achieving coupling increases of up to 50x00025; and automatic reduction of system drift.PostprintPeer reviewe

    An iPSC Patient Specific Model of CFH (Y402H) Polymorphism Displays Characteristic Features of AMD and Indicates a Beneficial Role for UV Light Exposure

    Get PDF
    Age related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease, however these do not exist for the dry form. Complement factor H (CFH) polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, retinal pigment epithelium (RPE) damage and visual decline. We have derived and characterised induced pluripotent stem cell (iPSCs) lines from two patients without AMD and low risk genotype and two patients with advanced AMD and high risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H (FH), factor I (FI) and factor H like 1 (FHL-1). The iPSC RPE cells derived from high risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy and deposition of “drüsen” like deposits. The low and high risk RPE cells respond differently to intermittent exposure to UV light which leads to an improvement in cellular and functional phenotype only in the high risk AMD-RPE cells. Taken together our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing

    Hypertension and happiness across nations

    Get PDF
    In surveys of well-being, countries such as Denmark and the Netherlands emerge as particularly happy while nations like Germany and Italy report lower levels of happiness. But are these kinds of findings credible? This paper provides some evidence that the answer is yes. Using data on 16 countries, it shows that happier nations report systematically lower levels of hypertension. As well as potentially validating the differences in measured happiness across nations, this suggests that blood-pressure readings might be valuable as part of a national well-being index. A new ranking of European nations’ GHQ-N6 mental health scores is also given

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness

    Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration

    Get PDF
    PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation
    corecore