Abstract

Joubert syndrome (JBTS) is a genetically heterogeneous autosomal recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTSrelated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128 (hg 19)), and exome sequencing revealed two missense variants in ARL3 within the candidate locus. The encoded protein, ADP Ribosylation Factor-Like GTPase 3, ARL3, is a small GTP-binding protein that is involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E and NPHP3 localisation in cilia. We propose that ARL3 provides a potential hub in the network of encoded ciliopathy genes, whereby perturbation of ARL3 results in the mislocalisation of multiple ciliary proteins due to abnormal displacement of lipidated protein cargo

    Similar works