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Multivariate Random Effect Models with
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James O. Chipperfield and David G. Steel 1

Abstract

This paper considers the problem of estimating fixed effects, random effects and
variance components for the multi-variate random effects model with complete
and incomplete data. It also considers making inference about the fixed and

random effects, a problem which requires careful consideration of the choice of
degrees of freedom to use in confidence intervals. This paper uses the EM

algorithm to maximise the hierachical likelihood (HL). The HL estimates are
often the same as the REML and Bayesian-justified estimates in Shah, Laird,

and Schoenfeld (1997). A key benefit of the h-likelihood approach is its
simplicity- it doesn’t require integrating over the random effects or use of priors
for its justification. Another benefit is that all inference can be made within a

single framework. Extensive simulations show: that the h-likelihood approach is
significantly more accurate than the well-known ANOVA approach; the

h-likelihood approach often recovers a lot of the information lost through
missing data; the h-likelihood approach has good coverage properties for fixed

and random effects that are estimated using small samples.

Key words: maximum likelihood, hierachical likelihood, EM algorithm, missing

data

1 Introduction

The multivariate random effects model (MVEM) is a common way to analyse

group-level and individual or observation-level effects. For example, the variance

components of the MVEM give an insight into the relative importance of institu-

tion and individual on examination performance (e.g. Yang, Goldstein, Browne,

1James Chipperfield is Assistant Director, Methodology and Data Management Division,
Australian Bureau of Statistics. David Steel is Director, Centre for Statistical and Survey
Methodology, University of Wollongong. The authors would like to thank the Australian Bureau
of Statistics for supporting this research.
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& Woodhouse, 2002). While the fixed effects are often of primary interest Lee,

Nelder, and Pawitan (2006) (pp.148) notes, there are an increasing number of

applications in which the random effects themselves are of interest. Some exam-

ples include ranking school performance and improvement in breeding programs.

The MVEM distinuguishes itself from the more commonly used 1-way or 2-way

random effects models by the fact that the MVEM allows the variance compo-

nents to be unstructred. It is also this very reason that distinguishes the MVEM

from generalised linear mixed models (see McCulloch & Searle, 2001).

With complete or missing data, Maximum Likelihood (ML) treatment of the

MVEM (see Shah et al., 1997) focuses on making inferences about the fixed

effects: the random effects are treated as nuisance parameters to be integrated

out of the likelihood. Estimates of random effects and their measures of accuracy

can then be obtained as a Best Linear Unbiased Predictor (BLUP) (see McCulloch

& Searle, 2001, pp 170). A much more convenient approach of making inference

for the present problem is to use the Hierachical Likelihood (HL), as it provides

a single framework to making inference about both the fixed and random effects.

As Lee et al. (2006) (pp. 133) notes, with the HL framework standard error

estimates are easily obtained whereas for the ML approach other methods are

necessary to obtain them.

The h-likelihood (HL) was initially proposed by Lee and Nelder J. (1996), and

expanded upon by Lee et al. (2006), as a more general and tractable framework
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than the ML framework, particularly for mixed models. The HL approach to

the missing data problems for generalised linear mixed models were subsequently

explored by Yun, Lee, and Kenward (2007) . The HL approach in Yun et al.

(2007) characterises the missing data and the random effects to be parameters to

be estimated, while using the profile likelihood to make a REML-type adjustment

to account for the number of parameters in estimates of the variance components.

They do not consider the MVEM, which is the focus of this paper.

For the MVEM, we show that the HL estimates have the same form as the

REML estimates of the fixed effects and the between-group variance as well as

the BLUP of the random effects. When accounting for missing data within the

HL framework, an EM algorithm is used to replace the missing data with their

expection conditional on the observed data and the loss of accuracy is accounted

for using a method typically applied in the context of ML; this approach is inter-

esting in that it combines features of both ML and HL, whereas they are often

seen as alternatives in the literature. In addition, this paper shows that inferences

about the fixed and random effects using the HL approach (and so the REML

estimates of the fixed effects) are theoretically valid if the probability that an ob-

servation is missing only depends upon the observation’s group-level effects (e.g.

if the probability depends on the observation’s non-missing values, inferences are

theoretically invalid).

This paper also evaluates the accuracy and coverage of estimates of fixed and
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random effects; this paper pays particular attention to the degrees of freedom

used to construct confidence intervals, which is particularly important in small

samples.

Sections 2 and 3 consider the multivariate random effects model for the com-

plete and incomplete data cases, respectively. Section 4 evaluates the HL ap-

proach in a simulation study. Section 5 makes some concluding remarks.

2 Multivariate Random Effects Model with Com-

plete Data

2.1 Fixed and Random Effects

Define yij = (yij1, . . . yijk, . . . yijK)′ to be the complete data about K variables

from observation i in group j, where k = 1 . . . , K, i = 1, . . . , nj, j = 1, . . . , J

and n = Σjnj. Let y∗ = (y′
11,y

′
21, . . . ,y

′
ij, . . . ,y

′
nJJ)′ be the M column vector

obtained by stacking the yij s. Here we denote the complete data by dc. Through-

out this paper we assume the sampling process that lead to y∗ can be ignored

(see Chambers and Skinner (2003)). Assume the data follow the model

y∗ = qµ + Z∗b + e∗ (1)

where q is an MxK design matrix, µ is the K column vector of means with

element µk (allowing for an unequal number of variables, say Ki, per observation is

straight-forward). Define bj = (bj1, bj2, . . . bjk, . . . , bjK)′ to be a vector of random
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effects for group j and therefore that b = (b′
1,b

′
2, . . .b

′
j, . . . ,b

′
J)′ is a Tx1 column

vector, where T = JK. The design matrix for the random effects is given by

Z∗, an MxT matrix with element (m, t) equal to 1 if the mth element of y∗ is

subject to random effect j and zero otherwise, and t = 1, . . . , T . In terms of a

randomised trial, for example, q could indicate different experimental conditions

and b could indicate measurement errors associated with different clinics used

in the trial. The vector of residuals is e∗ = (e′
11, e

′
21, . . . , e

′
ij, . . . , e

′
nJJ)′, where

eij = (eij1, eij2, . . . eijK)′ and eijk = yijk − µk − bjk.

We assume the random effects, bj to be N(0K ,Σb), where 0K is a K column

vector of zeros and we denote Σb = (σb,kk′). Given bj s are assumed independent

it follows that b is N(0T ,Vb) where Vb = IJ ⊗Σb. We also assume the residuals,

eij, are N(0K ,Σw) and we denote Σw = (σw,kk′). Given the eij s are independent

e∗ is N(0M ,Vw) where Vw = In ⊗ Σw. It then follows that V = V ar(y∗) has

block-wise elements

Cov(yij,yi′j′) = Σw + Σb if i = i′ and j = j′

= Σb if i 6= i′ and j = j′

= 0KK if i 6= i′ and j 6= j′
(2)

where 0KK is a KxK matrix of zeros. Other variance structures for (2) can be

considered, say by replacing 0KK by a parameter of some sort (see Shah et al.,

1997). The joint distribution of y∗ and b (see Lee & Nelder J., 1996 and Robinson,

1991) can be factorised as
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p(y∗ | b;Vw)p(b;Vb) (3)

with HL

hc = −1/2b′V−1
b b−1/2log | Vb | −1/2(y∗−qµ−Z∗b)′V−1

w (y∗−qµ−Z∗b)−1/2log | Vw |

(4)

The corresponding score equation for Γ = (µ,b), obtained by differentiating (4)

with respect to Γ, is

Sc(Γ; dc) =

(
q′V−1

w (y∗ − qµ− Z∗b)
Z∗ ′V−1

w (y∗ − qµ)−V−1
b b− Z∗ ′V−1

w Z∗b

)
(5)

The HL estimate of Γ, denoted by Γ̂ = (µ̂′, b̂′)′, is obtained by solving Sc(Γ; dc) =

0. The solution is

µ̂ = [q′(Vw + Z∗VbZ
∗ ′)−1q]

−1
q′(Vw + Z∗VbZ

∗ ′)−1y∗

b̂ =
(
Z∗ ′V−1

w Z∗ + V−1
b

)−1
Z∗ ′V−1

w (y∗ − qµ̂)
(6)

The expected information referred to as hinfo, matrix of Γ using dc, obtained by

twice differentiating (4) with respect to Γ, is given by

Hc = hinfo(Γ; dc) =

(
q′V−1

w q q′V−1
w Z∗

Z∗ ′V−1
w q Z∗ ′V−1

w Z∗ + V−1
b

)
(7)

It is easy to show, essentially using the same argument in Lee et al. (2006)

(see pp. 157-8) that H−1
c in (7) gives a valid estimate of the variance of Γ. The
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estimators in (6) are the same as in Shah et al. (1997).

The next section discusses estimating Vw and Vb.

2.2 Dispersion Parameters

Let Σ = (Σw,Σb). For estimation of Σ, consider the adjusted likelihood

hA,c = hc + log{det(H−1
c )}. (8)

The second term in (8) is essentially a degrees of freedom adjustment for the

estimation of Σ that accounts for the fact that Γ, which includes the fixes and

random effects, are parameters that must be estimated. The adjusted profile

likelihood (Patterson & Thompson, 1971, Cox & Reid, 1987 and Lee & Nelder J.,

1996) is

hP,c = hA,c |Γ=Γ̂ (9)

Patterson and Thompson (1971) shows that use of (9) requires that Σ̂ and Γ̂

are orthogonal. This requirement is met by noting that ∂2hP,c/
(
∂Γ∂Σ

)
= 0.

Let Σw have elements φr and Σb have elements αs. The score equation for φr

is

Sc(φr; dc) = ∂hP,c/∂φr

= −{(y∗ − qµ̂− Z∗b̂)′V−1
w(r)(y

∗ − qµ̂− Z∗b̂)} − tr(H−1
c Hc(r))− tr[V−1

w Vw(r)]

(10)
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where Vw(r) = ∂Vw/∂φr, V−1
w(r) = ∂V−1

w /∂φr = V−1
w Vw(r)V

−1
w ,

Hc(r) = ∂Hc/∂φr =

(
q′V−1

w(r)q q′V−1
w(r)Z

∗

Z∗ ′V−1
w(r)q Z∗ ′V−1

w(r)Z
∗

)
.

The score equation for αs is

Sc(αs; dc) = ∂hP,c/∂αs

= −tr{b̂′V−1
b(s)b̂−KcV

−1
b(s) − tr[V−1

b Vb(s)}
(11)

where Kc is submatrix of H−1
c corresponding to b̂, Vb(s) = ∂Vb/∂αs and V−1

b(s) =

∂V−1
b /∂αs = −V−1

b Vb(s)V
−1
b .

We now introduce notation. Define {rmj}J
j=1 to be a J-length vector with

elements mj; replacing the subscript r with c or d simialrly defines the elements

of a column vector or a diagonal matrix respectively. The HL estimators of Σb

and Σw are the solutions for Σb and Σw after equating (10) and (11) to zero for

all r and s, respectively. It is shown in A.1 and A.2 that the HL estimators of

Σb and Σw, respectively, are

Σ̂b = Σj[b̂
′
jb̂j + Kc,j]/J (12)

where Kc,j = V ar[b̂j | dc] is the j th diagonal block of Kc corresponding to

the random effects in group j and

Σ̂w = (nIK − ΣJ+1
j ĝj)

−1Σij ê
′
ij êij (13)
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respectively, where ĝ = B̂−1A with j th diagonal block denoted ĝj of dimen-

sion KxK,

A =

 nIK {rnjIK}J
j=1

{cnjIK}J
j=1 {dnjIK}J

j=1

, B̂ =


nIK {rnjIK}J

j=1

{cnjIK}J
j=1 {dnjIK + Σ̂wΣ̂

−1

b }J
j=1


and êijk = yijk − µ̂k − b̂jk. Since Σ̂b and Σ̂w are clearly functions of themselves,

estimates must be calculated by iteration (see section 2.3). As nj increases, and

Σ̂wΣ̂
−1

b makes less of a contribution to ĝ, then Σjĝj ≈ J + 1. The estimate Σ̂b

is the same as in Shah et al. (1997).

An alternative method for estimating Σw and Σb is ANOVA (see Chambers &

Skinner, 2003, chapter 20). The ANOVA estimators in the balanced case (nj = n̄

for all j) are

Σ̂
AN

w = (n− J)−1Σij(yij −mj)
′(yij −mj)

Σ̂
AN

b = n̄−1(S− Σ̂
AN

w )

(14)

where mj = n̄−1Σn̄
i=1yij, S = (J − 1)−1ΣJ

j=1n̄(mj − m)′(mj − m), and m =

n−1Σn
ijyij. We show in simulations that the HL approach is clearly preferred to

the ANOVA approach with complete data.

2.3 Estimation

The estimation procedure based on dc involves:

1. Initialising Σ̂, denoted by Σ̂
(0)

2. Calculating Γ̂
(t)

from (6) using Σ̂
(t−1)

3. Calculating Σ̂
(t)

from (12) and (13) using Γ̂
(t)

4. Repeating 2 - 3 until convergence.
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5. Calculating Hc.

3 Multivariate Random Effects Model with In-

complete Data

Define a Kxn matrix M with elements indicating whether the kth variable is

missing for the i th observation in group j. Let M be some function of a parameter

ζ. We define the data to be Missing at Random Within Groups (MARWG) (also

called the selection model of Diggle & Kenward, 1994) if

p(y∗,b,M;Vb,Vw, ζ) = p(y∗ | b;Vw)p(b;Vb)p(M | y∗
obs,b; ζ)

where y∗
obs are the observed elements of y∗. This means the probability that

an observation’s variable is missing depends upon its observed variables and

its group effects. The data are Missing Completely at Random Within Groups

(MCARWG) (a special case of the selection model)

p(y∗,b,M;Vw,Vb, ζ) = p(y∗ | b;Vw)p(b;Vb)p(M | b; ζ).

This means the probability that an observation’s variable is missing depends on

its group effects. The data are Missing Completely at Random (MCAR) (see

Rubin & Little, 1987) if

p(y∗,b,M;Vw,Vb, ζ) = p(y∗ | b;Vw)p(b;Vb)p(M; ζ).

Under MCAR analysis using only the complete cases (i.e. observations for

which there are no missing variables) leads to unbiased estimation and inference.
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If the data are MCARWG or MARWG, using only complete cases leads to biased

estimation and inference. The MCAR, MCARWG and MARWG factorisations

mean we can ignore the factors p(M; ζ), p(M | b; ζ) and p(M | y∗
obs,b; ζ) respec-

tively and we are essentially still maximising (3).

3.1 Fixed and Random Effects

Consider an observed sample set, do, which arises from subjecting dc to a missing

data mechanism. One key result of Breckling, Chambers, Dorfman, Tam, and

Welsh (1994) is that the ML estimate of θ based on do is obtained by solving

Edc|do [Sc (θ; dc) | do] = 0 (15)

where Edc|do is the expectation with respect to the complete data dc conditional

on the incomplete data do and Sc (θ; dc) is the score function for θ based on dc.

Here we assume the distribution of the data is defined by (1). In fact we only

need assume that the distribution of the missing data given the observed data

follows a normal distribution (see below). The result (15) for the likelihood is

applied here for the HL, in line with assersion of Lee and Nelder J. (1996) that

the the h-likelihood is the fundamental likelihood.

It follows that the HL estimate of Γ based on do, denoted by Γ̃, is given by

(6) except that yijk is replaced by ỹijk = Edc|do(yijk | do), where
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ỹijk = yijk if yijk is observed

= Edc|do(µk + bjk + eijk | do) otherwise

= µk + bjk + Edc|do(eijk | do)

= µk + bjk + eobs,ijβ
w
ki,

(16)

where Edc|do(eijk | do) = eobs,ijβ
w
ki follows from the multivariate assumption for

the residuals in (1), βw
ki = Σ−1

w·ijΣw·ij(k), Σw·ij is Σw after removing the rows and

columns corresponding to the missing data items for observation i in group j,

Σw·ij(k) is the k th column vector of Σw·ij, and eobs,ij is subset of eij corresponding

to the observed elements of yij.

Another key result of Breckling et al. (1994) is that the observed informa-

tion for the ML estimate of a parameter θ under do, and adopted here for the

hierachical estimate of θ, is

hinfoo(θ; do) = hinfoc(θ; dc) | do − var [Sc (θ; dc) | do] (17)

The second term in (17) represents the loss of information due to observing do

rather than dc. Using (17), as well as (5) and (7), the observed information of Γ̃,

denoted by Ho = hinfoo(Γ̃; do), is

Ho = Hc − var [Sc (Γ; dc) | do]

=

(
q′V−1

w q− q′V−1
w VoV−1

w q q′V−1
w Z∗ − q′V−1

w VoV−1
w Z∗

Z∗ ′V−1
w q− Z∗ ′V−1

w VoV−1
w q Z∗ ′V−1

w Z∗ + V−1
b − Z∗ ′V−1

w VoV−1
w Z∗

)
(18)
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=

(
q′V−1

w (IM −VoV−1
w )q q′V−1

w (IM −VoV−1
w )Z∗

Z∗ ′V−1
w (IM −VoV−1

w )q V−1
b + Z∗ ′V−1

w (IM −VoV−1
w )Z∗

)

where IM is the identity matrix of order M , Vo = V ar(y∗ | do) =
{

d

{
d
Σw·ij

}nj

i=1

}J

j=1

and Σw·ij is obtained by sweeping the observed variables for observation i in group

j from Σw, since

Cov(yijk, yi′j′k′ | do) = Cov(µk + bjk + eijk,
µk′ + bj′k′ + ei′j′k′ | do)

= Cov(eijk, ei′j′k′ | eobs)

= σ2
wkk′·ij if i = i′ and j = j′

= 0 otherwise

(19)

For example, if yijk or yijk′ is observed then σ2
wkk′·ij = 0. The negative terms in

(18) reflect the information loss due to the missing data. The term Ho in (18 )

also appears in Shah et al. (1997), though in a slightly different form.

Above the missing data are treated as unobserved variables, as is the case

with the ML approach, not as parameters to be estimated. This is why only

the Hessian matrix for the fixed and random effects appear in the second term

of the profile likelihood of (8). As the hierachical approach in Yun et al. (2007)

treats missing observations as parameters to be estimated, the missing data also

appear in the Hessian matrix. For the MVEM this is really only a minor point

of difference.
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3.2 Dispersion Parameters

The HL estimates of the dispersion parameters from the observed data, denoted

by Σ̃ = (Σ̃w, Σ̃b), are constructed so that Edc|do [Σ̂] = Σ̃.

The HL estimate of Σw under do is then

Σ̃w = (nIK − Σjg̃j)
−1[Σij ẽij ẽ

′
ij + Σw·ij] (20)

where ẽij is a vector with kth element ỹijk− µ̃k− b̃jk, b̃ = (b̃jk) has the same form

as b̂ except that yijk is replaced by ỹijk and g̃j has the same form as ĝj except

that Σ̂w and Σ̂b are replaced with Σ̃w and Σ̃b ( Σ̃b is defined below). This is

justified since, from (13), Edc|do [êij ê
′
ij] = ẽij ẽ

′
ij + Σ̃w·ij and Edc|do [ĝj] = g̃j.

Similarly, an estimate of Σb under do is

Σ̃b = Σj[b̃
′
jb̃j + K̃o,j]/J (21)

where K̃o,j is an estimate of Ko,j, Ko,j = V ar[b̃j | do] is the jth diagonal block of

dimension KxK of Ko, Ko is submatrix of H−1
o corresponding to b, and K̃c,j has

the same form as Kc,j except that Σ is replaced with Σ̃. This is justified since,

from (12), Edc|do [b̂
′
jb̂j + vardc|do [b̂j | do]] = b̃′

jb̃j + vardc|do [b̃j | do]. The estimate

Σ̃b has the same form as Shah et al. (1997).

Use of the adjusted profile likelihood under do requires that Σ̂ is orthog-

onal to Γ̃ under do, which means that hinfo(Γ̃, Σ̃; do) must be block diago-

nal. From (17) this requirement is met by noting that: (i) Hc(Γ,Σ; dc)) =
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diag{Hc(Γ; dc)),Hc(Σ; dc))} ( see Section 2.2) and; (ii) Cov [Sc(Γ; dc), Sc(Σ; dc) | do]

is block diagonal if the data are MCARWG. If the data are MARWG, the off-

diagonals of Cov [Sc(Γ; dc), Sc(Σ; dc) | do] will be non-zero. However, we show in

simulations that the HL estimates work well even when the data are MARWG.

3.3 Estimation

The estimation procedure based on do involves:

1. Initialising Σ, denoted by Σ(0), by the identify matrix.

2. Calculating Γ̃
(t)

from (21) and (20) using Σ̃
(t)

3. Calculating Σ̃
(t+1)

from (6)after replacing the missing values by their condi-

tional expectation (see 16) and using Γ̃
(t)

4. Repeating 2 - 3 until convergence.

5. Calculating Ho.

4 Simulation Study

4.1 Data

The simulation study involved creating the complete data from (1) for the case

of three variables (K = 3), µ = (5, 3, 1) and 10 groups (J = 10). This study

considered n̄ = 6, 10, Σw = ρ, Σb = vρ, v = 0.1, 1,

ρ =

 1 0.83 0.88
1 0.81

1


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This study considered each of the 4 possible combinations of n̄ and v to generate

complete data. For each of these 4 combinations, 1200 complete data sets were

randomly generated. From each set of complete data, the data were simulated to

be either MCARWG and MARWG, as described below.

Data were simulated to be missing so that when n̄ = 6 (10), only 3 (4) of the

6 (10) observations in each group were complete.

When the data were MCARWG and n̄ = 10, the six incomplete observations

per group were missing y1, y2, y3, (y1, y2), (y1, y3), and (y2, y3). When n̄ = 6, the

three incomplete observations were missing y1, y2, and (y2, y3). The observations

selected to be incomplete were made completely at random.

When the data were MARWG the incomplete observations per group were

missing either y2 or y3 (but not both). The probability that observation i in

group j was incomplete was proportional to |yij1|/|Σn̄
i yij1|. If an observation was

determined to be incomplete, y2i or y3i (but not both) was randomly chosen to

be missing.

With complete data we estimate Σ using ANOVA (see 14) and HL (see (12)

and (13)). With incomplete data we estimate Σ by the ANOVA method using

only the complete cases (i.e. observations for which all variables are observed)

and by the HL method with complete and incomplete cases (see section 3.3).

Each estimate of Σ just mentioned is substituted into (6) to give a corresponding

estimate of Γ for the ANOVA and HL methods.
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The MSE of the estimator θ̂, is MSE(θ̂) = 1200−1Σ1200
g=1 (θ̂g − θ)2 where θ

is known and θ̂g is the estimate of θ from the g th simulated data set, where

g = 1, . . . , 1200.

Define the Relative MSE (RMSE) of θ̂ by

100 MSE(θ̂)/MSE(θ̂AC).

where MSE(θ̂AC) is the MSE of the ANOVA estimator with complete data (AC).

Tables 1 and 2 give the RMSE for HL with complete and incomplete data and

ANOVA with complete cases (ACC).

It is important to note that ANOVA gives unbiased estimates of Σb only if

the probability that it gives infeasible values (e.g. negative diagonals) is zero (

McCulloch & Searle, 2001, see p 172). For the AC estimator of Σb with v=0.1

this was not the case, with up to 70% of the 1200 simulated samples resulting

in infeasible values. When there are infeasible values, the estimate of Σb is set

to 0KK (see McCulloch & Searle, 2001, see p 172). Doing so made AC biased:

if AC gives infeasible values 70% of the time its bias would be 70%- assuming

it is unbiased when it gives feasible values. This situation was more severe for

ACC than for AC (see tables for details). This means, as a general approach,

ANOVA performed poorly. Nevertheless, to make ANOVA competitive, AC and

ACC estimates of Σ and Γ from the g th simulated data set were only included

in their coverage and MSE calculations if the estimate of Σb was feasible. This
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should be kept in mind when analysing the tables. We note that HL estimates of

the diagonals of Σb were always positive and so estimates from all 1200 simulated

data sets were used its MSE calculation.

With complete data, the RMSE of estimates of Σ from HL are close to 100

when v=1. This means the MSEs for HL and ANOVA estimates of Σ are close

in this case. When v=0.1, the HL is slightly more efficient than ANOVA when

estimating Σw, but can be significantly more efficient when estimating Σb. In

particular, the MSE of HL can be half that of AC.

With incomplete data, the results show that ACC has the highest RMSEs.

This is especially the case when the data are MARWG, in which case ACC is

biased. The RMSEs for HL are substantially smaller than ACC. Despite the

considerable amount of missing data, the RMSEs for HL with incomplete data is

often not much larger than HL with complete data. The RMSEs for HL did not

depend greatly upon whether the data were MCARWG or MARWG.

Tables 3 and 4 give the coverage properties for Γ. Whether for ACC , AC or

HL, the coverage of the confidence intervals based on the t-distribution were very

sensitive to the choice of the degrees of freedom, v and nj. A range of options were

considered for the degree of freedom (e.g. df(µk) = J−1 and df(bjk) = n̄−1) but

most performed poorly. The most promising choices for the degrees of freedom,

based on trial and error, are discussed below.

The degrees of freedom for the t-distribution used to construct confidence

18



Table 1: RMSEs for (Γ, Σ) when nj = 10

v = 1 v = 0.1
Complete MCARWG MARWG Complete MCARWG MARWG

HL HL ACC HL ACC HL HL ACC HL ACC
µ1 100 100 113 101 219 101 105 173 108 1150
µ2 100 102 112 100 187 100 107 175 104 805
µ3 100 100 112 100 244 103 108 172 102 1472
b̄j1 100 104 169 105 224 93 97 200 97 273
b̄j2 100 107 167 106 220 91 97 195 96 264
b̄j3 100 105 167 100 226 92 96 195 93 277

σw,11 100 122 304 128 804 99 114 285 119 504
σw,22 100 133 304 122 666 102 131 272 126 435
σw,33 100 129 295 100 954 97 118 276 100 495
σw,12 100 119 294 119 744 100 114 266 116 505
σw,13 100 107 294 108 894 97 111 278 105 505
σw,23 100 122 293 110 843 99 119 273 113 546
σb,11 100 101 131 100 354 74 83 470 81 1150
σb,22 100 101 129 103 265 79 96 565 90 113
σb,33 100 101 128 100 422 78 89 47 80 1411
σb,12 100 101 135 101 322 74 83 585 78 1314
σb,13 100 100 131 100 412 74 80 600 76 1425
σb,23 100 101 131 100 366 72 78 528 75 1328

Notes on Convergence

-AC did not give positive values for the diagonals of Σb in 5% and 50% of the
1200 simulated samples when v=1 and v=0.1, respectively

-When the data were MCARWG, ACC did not give positive values for the diag-
onals of Σb in 5% and 30% of the 1200 simulated samples when v=1 and v=0.1,
respectively

-When the data were MARWG, ACC did not give positive values for the diago-
nals of Σb in 8% and 74% of the 1200 simulated samples when v=1 and v=0.1,
respectively
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Table 2: RMSE for (Γ, Σ) when nj = 6

v = 1 v = 0.1
Complete MCARWG MARWG Complete MCARWG MARWG

HL HL ACC HL ACC HL HL ACC HL ACC
µ1 100 101 109 101 201 90 96 154 98 567
µ2 100 101 109 101 171 95 109 132 100 320
µ3 100 101 109 100 211 90 94 145 90 638
b̄j1 100 107 159 103 200 84 89 180 88 190
b̄j2 100 111 157 103 200 85 89 180 87 191
b̄j3 100 105 157 100 100 84 88 180 85 197

σw,11 100 127 251 117 900 94 116 210 105 264
σw,22 100 146 245 113 666 101 143 248 111 240
σw,33 100 116 251 100 1030 93 110 205 94 292
σw,12 100 115 250 102 747 97 123 240 106 260
σw,13 100 118 245 105 940 92 112 206 96 284
σw,23 100 128 238 106 770 94 117 232 96 260
σb,11 100 106 133 103 205 56 65 357 62 450
σb,22 100 105 128 112 163 54 74 422 64 466
σb,33 100 104 133 100 238 60 66 420 61 502
σb,12 100 105 131 106 191 52 56 377 54 461
σb,13 100 104 133 102 230 61 62 394 63 505
σb,23 100 103 133 106 216 50 53 418 52 506

Notes on Convergence

-AC did not give positive values for the diagonals of Σb in 4% and 70% of the
1200 simulated samples when v=1 and v=0.1, respectively

-When the data were MCARWG, ACC did not give positive values for the diag-
onals of Σb in 12% and 76% of the 1200 simulated samples when v=1 and v=0.1,
respectively

-When the data were MARWG, ACC did not give positive values for the diagonals
of Σb in 10% and 75% of the 1200 simulated samples when v=1 and v=0.1,
respectively
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intervals for estimates µ̂k is df(µ̂k) = n
[
σ̂2

w,kkn
−1{V ar(µ̂k)}−1

]
. The term in

the square brackets is often referred to as the design effect in survey sampling

(see Chambers & Skinner, 2003). The design effect measures the increase in

variance of an estimate, or the equivalently decrease in sample size, due to the fact

that each observation is not independent. If the sample was selected by Simple

Random Sampling or if Σ̂b = 0KK then the term in the square brackets would

be 1 and df(µ̂k) = n; this effectively means the n observations are independent.

In the present case, the design effect will be greater than 1 meaning df(µ̂k) < n.

The degrees of freedom for HL, df(µ̃k), is the same as above except that V ar(µ̂k)

is replaced by V ar(µ̃k).

A general expression for the degrees of freedom associated with an estimate of

θ is trace(H), where ŷ(θ) = Hy, where ŷ(θ) are the fitted values of y which are

functions of the parameter θ, and y are the observed values. The estimator of bjk

in (6) is already in this form. This justified setting df(b̂jk) = max
{
1, njσ̂

2
bkk(σ̂

2
bkk+

σ̂2
wkkn

−1
j )

}
, where the second term in the curly brackets is equal to nj multiplied

by the shrinkage factor for the random effect b̂jk. The minimum of 1 provided

robustness against the variability in the estimates of the variance components.

The shrinkage factor can also be thought of as effectively reducing the effective

sample size, by down-weighting the contribution of the nj observations in the

estimate of bjk. For the same reason, df(b̃jk) = max
{
1, njσ̃

2
bkk(σ̃

2
bkk + σ̃2

wkkn
−1
j )

}
From the form of df(b̃jk) it is apparent that no explicit attempt is made to account
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Table 3: Coverage (95%) for Γ when nj = 10

v = 1 v = 0.1
Complete MCARWG MARWG Complete MCARWG MARWG
HL AC HL ACC HL ACC HL AC HL ACC HL ACC

µ1 94.7 94.9 94.9 96.3 94.6 93.2 94.5 96.0 93.5 98.3 94.2 69.9
µ2 95.5 95.5 95.6 96.2 95.2 94.6 94.0 95.8 94.2 97.5 94.8 78.7
µ3 94.9 94.9 94.5 95.4 94.8 90.4 95.6 97.0 94.8 98.3 94.4 64.5
b̄j1 96.1 96.1 95.9 98.6 95.9 100.0 96.7 95.7 95.5 98.7 96.5 97.0
b̄j2 96.3 96.5 96.1 98.7 96.0 99.0 96.8 94.3 94.8 97.8 96.9 97.0
b̄j3 96.0 96.0 95.7 98.4 95.9 100.0 96.7 94.7 94.9 97.2 96.6 97.9

Table 4: Coverage (95%) for Γ when nj = 6

v = 1 v = 0.1
Complete MCARWG MARWG Complete MCARWG MARWG
HL AC HL ACC HL ACC HL AC HL ACC HL ACC

µ1 95.8 95.9 95.6 97.2 93.9 94.5 93.9 94.7 94.2 97.5 93.8 81.1
µ2 95.4 95.5 95.8 96.7 94.2 94.1 94.2 95.5 95.0 97.5 94.2 86.6
µ3 95.2 95.5 95.4 96.7 94.0 93.4 94.1 94.8 95.6 97.9 94.0 76.3
b̄j1 97.8 97.8 97.3 99.0 98.6 99.4 98.9 97.9 96.5 96.9 98.0 92.7
b̄j2 97.6 97.6 97.1 98.7 98.7 97.9 98.7 97.5 96.8 96.5 98.7 96.7
b̄j3 97.6 97.5 97.4 98.7 98.6 99.2 98.7 98.2 96.5 98.5 98.5 99.4

for the loss in the degrees of freedom due to missing data.

The coverage for the AC and HL were reasonably close to the nominal value

of 95%. When the data are MARWG, ACC estimates are biased, leading to

coverage rates varying far from their nominal values.
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5 Discussion and Future Work

This paper proposes a method for estimating the fixed effects, random effects

and the variance components for both a multi-variate random effects model with

complete and incomplete data. This paper uses the EM algorithm to maximise

the hierachical likelihood and shows that it equivalent to the REML approach of

Shah et al. (1997). A key benefit of the h-likelihood approach is its simplicity- it

doesn’t require integrating over the random effects or use of priors for its justifi-

cation. Simulations show the h-likelihood approach is significantly more efficient

than the well-known ANOVA approach at estimating the variance components.

The ANOVA is unstable in that it often gives values for the between-group vari-

ance, especially when the the between-group variance is a tenth the size of the

between-observation (or individual) variance. Even when ignoring this major

draw-back, ANOVA is inefficient compared with the HL approach, particularly

when estimating the between-group variation and the random effects. Allowing

for missing data is straight-forward and avoids the complexities associated with

integration, commonly used to handle missing data in mixed models. The paper

suggests a way of choosing the degrees of freedom to support good coverage rates

in small samples.
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A Appendix

A.1 Estimate of Σw

We look at the three terms in Sc(αs; dc) given by (10). Let ê = (y∗ − qµ̂ −

Z∗b̂) and êij be the K subvector of ê corresponding to the (i, j) th observa-

tion. Since Vw(r) is block diagonal, from the first term note that −ê′V−1
w(r)ê =

tr[êê′V−1
w Vw(r)V

−1
w ] = tr[Σij êij ê

′
ijΣ

−1
w Σw(r)Σ

−1
w ], where Σw(r) = ∂Σw/∂φr. Look-

ing at the third term −tr[V−1
w Vw(r)] = −ntr[Σ−1

w Σw(r)]. The second term is

tr[H−1
c Hc(r)] , where Hc(r) = ∂Hc/∂φr. As q is formed by stacking copies of IK ,

Hc(r) =

(
−q′V−1

w Vw(r)V
−1
w q −q′V−1

w Vw(r)V
−1
w Z∗

−Z∗ ′V−1
w Vw(r)V

−1
w q −Z∗ ′V−1

w Vw(r)V
−1
w Z∗

)

=


−nΣ−1

w Σw(r)Σ
−1
w

{
r
− njΣ

−1
w Σw(r)Σ

−1
w

}J

j=1

{
c
− njΣ

−1
w Σw(r)Σ

−1
w

}J

j=1

{
d
− njΣ

−1
w Σw(r)Σ

−1
w

}J

j=1



= −
{

d
Σ−1

w Σw(r)Σ
−1
w

}J

j=1


nIK

{
r
njIK

}J

j=1

{
c
njIK

}J

j=1

{
d
njIK

}J

j=1


= −

{
d
Σ−1

w Σw(r)Σ
−1
w

}J+1

u=1
a

where

a =


nIK

{
r
njIK

}J

j=1

{
c
njIK

}J

j=1

{
d
njIK

}J

j=1


Similarly we may write

Hc =


Σ−1

w nIK

{
r
njΣ

−1
w

}J

j=1

{
c
njΣ

−1
w

}J

j=1

{
d
njΣ

−1
w + Σ−1

b

}J

j=1


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=
{

d
Σ−1

w

}J+1

u=1
b

where

b =


nIK

{
r
njIK

}J

j=1

{
c
njIK

}J

j=1

{
d
njIK + ΣwΣ−1

b

}J

j=1


It follows that

H−1
c Hc(r) = b−1

{
d
Σw

}J+1

u=1

{
d
Σ−1

w Σw(r)Σ
−1
w

}J+1

u=1
a

= b−1a
{

d
Σw

}J+1

u=1

{
d
Σ−1

w Σw(r)Σ
−1
w

}J+1

u=1

= g
{

d
Σw(r)Σ

−1
w

}J+1

u=1
,

noting that swapping the order of the matrices is permissable since all matrices

are symmetric.

Substituting these three terms into the equation Sc(φr; dc) = 0, letting g =

b−1a and gj be the diagonal blocks of g of dimension KxK we obtain

tr
[
Σij êij ê

′
ijΣ

−1
w Σw(r)Σ

−1
w

]
+ tr

[
g
{

d
Σw(r)Σ

−1
w

}J+1

j=1

]
− ntr

[
Σ−1

w Σw(r)

]
= 0

which implies

tr
[
Σij êij ê

′
ijΣ

−1
w Σw(r)Σ

−1
w

]
+ tr

[
ΣJ+1

u=1guΣw(r)Σ
−1
w

]
− ntr

[
Σ−1

w Σw(r)

]
= 0 (22)

A solution to this equation for all φr requires that

Σij êij ê
′
ijΣ

−1
w + ΣJ+1

u gu − nIK = 0

After rearranging we obtain an estimate of Σw from dc given by

Σ̂w = (nIK − ΣJ+1
j gj)

−1Σij êij ê
′
ij
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A.2 Estimate of Σb

From the first term in (11),

tr[b̂′V−1
b(s)b̂] = tr[b̂b̂′V−1

b(s)] = tr[b̂b̂′V−1
b Vb(s)V

−1
b ],

V−1
b(s) = −∂V−1

b /∂αs = V−1
b Vb(s)V

−1
b

and

Vb(s) = ∂Vb/∂αs.

Making these substitutions into Sc(αs; dc)) = 0 and solving results in

tr[b̂b̂′V−1
b Vb(s)V

−1
b ] + tr[KcV

−1
b Vb(s)V

−1
b ]− tr[V−1

b Vb(s)] = 0

A solution for αs for all s is then

tr[b̂b̂′V−1
b ] + tr[KcV

−1
b ]− tr[IKJ ] = 0

tr

[
Σjb̂jb̂

′
jΣ

−1
b + ΣjKc,jΣ

−1
b − JIK

]
= 0

Noting that tr(A) = tr(B) if A = B it follows that

Σjb̂
′
jb̂jΣ

−1
b + ΣjKc,jΣ

−1
b − JIK = 0KK

Σ−1
b = [Σjb̂

′
jb̂j + ΣjKc,j]

−1J

Σb = [Σjb̂
′
jb̂j + ΣjKc,j]J

−1

Therefore an estimate of Σb based on dc is Σ̂b = Σj[b̂
′
jb̂j + Kc,j]J

−1.
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