84 research outputs found

    Albedos of Small Jovian Trojans

    Get PDF
    We present thermal observations of 44 Jovian Trojan asteroids with diameters (D) ranging from 5 to 24 km. All objects were observed at a wavelength of 24 microns with the Spitzer Space Telescope. Measurements of the thermal emission and of scattered optical light, mostly from the University of Hawaii 2.2-meter telescope, together allow us to constrain the diameter and geometric albedo of each body. We find that the median R-band albedo of these small Jovian Trojans is about 0.12, much higher than that of "large" Trojans with D > 57 km (0.04). Also the range of albedos among the small Trojans is wider. We attribute the Trojan albedos to an evolutionary effect: the small Trojans are more likely to be collisional fragments and so their surfaces would be younger. A younger surface means less cumulative exposure to the space environment, which suggests that their surfaces would not be as dark as those of the large, primordial Trojans. In support of this hypothesis is a statistically significant correlation of higher albedo with smaller diameter in our sample alone and in a sample that includes the larger Trojans.Comment: 41 pages, 6 figures, 4 tables, AASTe

    Evidence of Fragmenting Dust Particles from Near-Simultaneous Optical and Near-IR Photometry and Polarimetry of Comet 73P/Schwassmann-Wachmann 3

    Get PDF
    We report imaging polarimetry of segments B and C of the Jupiter-family Comet 73P/Schwassmann-Wachmann 3 in the I and H bandpasses at solar phase angles of approximately 35 and 85deg. The level of polarization was typical for active comets, but larger than expected for a Jupiter-family comet. The polarimetric color was slightly red (dP/dL = +1.2 +/- 0.4) at a phase angle of ~ 35deg and either neutral or slightly blue at a phase angle of ~ 85deg. Observations during the closest approach from 2006 May 11-13 achieved a resolution of 35 km at the nucleus. Both segments clearly depart from a 1/rho surface brightness for the first 50 - 200 km from the nucleus. Simulations of radiation driven dust dynamics can reproduce some of the observed coma morphology, but only with a wide distribution of initial dust velocities (at least a factor of 10) for a given grain radius. Grain aggregate breakup and fragmentation are able to reproduce the observed profile perpendicular to the Sun-Comet axis, but fit the observations less well along this axis (into the tail). The required fragmentation is significant, with a reduction in the mean grain aggregate size by about a factor of 10. A combination of the two processes could possibly explain the surface brightness profile of the comet.Comment: 40 pages including 11 figure

    `Oumuamua as a messenger from the Local Association

    Get PDF
    7 pages, one table, two figures, accepted for publication by ApJL. © 2018. The American Astronomical Society. All rights reserved.With a hyperbolic trajectory around the Sun, 'Oumuamua is the first confirmed interstellar object. However, its origin is poorly known. By simulating the orbits of 0.23 million local stars, we find 109 encounters with periastron less than 5 pc. 'Oumuamua's low peculiar velocity is suggestive of its origin from a young stellar association with similar velocity. In particular, we find that 'Oumuamua would have had slow encounters with at least five young stars belonging to the Local Association, thus suggesting these as plausible sites for formation and ejection. In addition to an extremely elongated shape, the available observational data for 'Oumuamua indicates a red color, suggestive of a potentially organic-rich and activity-free surface. These characteristics seem consistent with formation through energetic collisions between planets and debris objects in the middle part of a young stellar system. We estimate an abundance of at least 6.0 × 10 -3 au -3 for such interstellar objects with mean diameter larger than 100 m and find that it is likely that most of them will be ejected into the Galactic halo. Our Bayesian analysis of the available light curves indicates a rotation period of 6.96 +1.45 -0.39, which is consistent with the estimation by Meech et al. and shorter than those in other literature. The codes and results are available on GitHub (https://github.com/phillippro/Oumuamua).Peer reviewe

    The Diverse Solar Phase Curves of Distant Icy Bodies. II. The Cause of the Opposition Surges and Their Correlations

    Get PDF
    We collect well-measured opposition surge properties for many icy bodies orbiting the Sun (mostly from our own observations) plus for many icy moons, resulting in a data base of surface and orbital properties for 52 icy bodies. (1) We put forward four criteria for determining whether the surge is being dominated by shadow hiding (SH) or coherent backscattering (CB) based on readily measured quantities. The CB surge mechanism dominates if the surge is color dependent, the phase curve is steeper than 0.04 mag/deg, the phase curve shape matches the CB model of Hapke, or if the albedo is higher than roughly 40%. (2) We find that virtually all of our sample have their phase curves dominated by CB at low phase angles. (3) We present a graphical method to determine the Hapke surge parameters B_C0 and h_C. (4) The Kuiper Belt Objects (KBOs) and Centaurs have relatively high surge amplitudes, B_C0 > ~0.5 and widths with h_C ~ 3 deg. (5) We find highly significant but loose correlations between surge properties and the colors, albedos, and inclinations. We interpret this as young surfaces tending to have low surge slopes, high albedo, and gray colors. (6) Nereid has its surface properties similar to other icy moons and greatly different from KBOs and Centaurs, so we conclude that Nereid is likely a nearly-ejected inner Neptunian moon rather than a captured KBO.Comment: Astronomical Journal, in press, 41 pages, 5 figure

    Properties of the Distant Kuiper Belt: Results from the Palomar Distant Solar System Survey

    Get PDF
    We present the results of a wide-field survey using the 1.2-m Samuel Oschin Telescope at Palomar Observatory. This survey was designed to find the most distant members of the Kuiper belt and beyond. We searched ~12,000 deg2 down to a mean limiting magnitude of 21.3 in R. A total number of 52 KBOs and Centaurs have been detected, 25 of which were discovered in this survey. Except for the re-detection of Sedna, no additional Sedna-like bodies with perihelia greater than 45 AU were detected despite sensitivity out to distances of 1000 AU. We discuss the implications for a distant Sedna- like population beyond the Kuiper belt, focusing on the constraints we can place on the embedded stellar cluster environment the early Sun may be have been born in, where the location and distribution of Sedna-like orbits sculpted by multiple stellar encounters is indicative of the birth cluster size. We also report our observed latitude distribution and implications for the size of the plutino population.Comment: 40 pages, 12 figures, 3 tables Accepted by Ap

    Probing the Substellar Regime with SIRTF

    Get PDF
    One of the main scientific drivers of the Space InfraRed Telescope Facility (SIRTF) is the search for brown dwarfs and extrasolar superplanets. We discuss observational strategies for identification of these objects, and conclude that an optimal strategy is a wide IRAC survey (18 deg2^2) with a 5 σ\sigma sensitivity of 3.9 μ\muJy in channel 2 (M19.1m\sim19.1^m). For this sensitivity, we provide estimates of the number of low mass brown dwarfs and isolated planets detected per square degree for power-law mass functions with α\alpha=1.5, and 1.0. Shallower surveys covering a larger area are inefficient because of large overheads and detector noise. Deeper surveys covering a smaller area become more and more affected by crowding with galaxies. A survey like the one that we propose would determine the field mass function down to a few Jupiter masses through the identification of a large sample of brown dwarfs and isolated planets. The proposed SIRTF survey would also allow the first detection of ultracool substellar objects with temperatures between 700 K and 200 K. The cooling curves of substellar objects with masses less than 20 Jupiters imply that they should spend most of their lifetimes at temperatures below 700 K. Preliminary models indicate that their atmospheres could be dominated by water clouds, which would diminish their optical and near-infrared fluxes. The properties of those objects are still completely unexplored.Comment: 7 pages, 6 figures, submitted to PAS

    Phase Curves of Nine Trojan Asteroids over a Wide Range of Phase Angles

    Get PDF
    We have observed well-sampled phase curves for nine Trojan asteroids in B-, V-, and I-bands. These were constructed from 778 magnitudes taken with the 1.3-m telescope on Cerro Tololo as operated by a service observer for the SMARTS consortium. Over our typical phase range of 0.2-10 deg, we find our phase curves to be adequately described by a linear model, for slopes of 0.04-0.09 mag/deg with average uncertainty less than 0.02 mag/deg. (The one exception, 51378 (2001 AT33), has a formally negative slope of -0.02 +- 0.01 mag/deg.) These slopes are too steep for the opposition surge mechanism to be shadow hiding (SH), so we conclude that the dominant surge mechanism must be coherent backscattering (CB). In a detailed comparison of surface properties (including surge slope, B-R color, and albedo), we find that the Trojans have surface properties similar to the P and C class asteroids prominent in the outer main belt, yet they have significantly different surge properties (at a confidence level of 99.90%). This provides an imperfect argument against the traditional idea that the Trojans were formed around Jupiter's orbit. We also find no overlap in Trojan properties with either the main belt asteroids or with the small icy bodies in the outer Solar System. Importantly, we find that the Trojans are indistinguishable from other small bodies in the outer Solar System that have lost their surface ices (such as the gray Centaurs, gray Scattered Disk Objects, and dead comets). Thus, we find strong support for the idea that the Trojans originally formed as icy bodies in the outer Solar System, were captured into their current orbits during the migration of the gas giant planets, and subsequently lost all their surface ices.Comment: Icarus, in pres

    Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    Full text link
    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, and the formation of potentially habitable planets in a binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in Binary Star Systems (Ed. N. Haghighipour, Springer publishing company

    TNOs are cool: a survey of the transneptunian region

    Get PDF
    Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well
    corecore