11,037 research outputs found
Recommended from our members
Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity
Ibalizumab is a humanized monoclonal antibody that binds human CD4—a key receptor for HIV—and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope protein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab L chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistance to ibalizumab, we reasoned that ‘refilling’ it by engineering an N-linked glycan into the ibalizumab L chain at a position spatially proximal to gp120 V5 may restore susceptibility to ibalizumab. Indeed, one such ibalizumab variant neutralized 100% of 118 tested diverse HIV-1 strains in vitro, including ten strains resistant to parental ibalizumab. These findings demonstrate that the strategic placement of a glycan in the variable region of a monoclonal antibody can substantially enhance its activity
ALMA Observations of Circumnuclear Disks in Early Type Galaxies: 12CO(2-1) and Continuum Properties
We present results from an Atacama Large Millimeter/submillimeter Array
(ALMA) Cycle 2 program to map CO(2-1) emission in nearby early-type galaxies
(ETGs) that host circumnuclear gas disks. We obtained resolution
Band 6 observations of seven ETGs selected on the basis of dust disks in Hubble
Space Telescope images. We detect CO emission in five at high signal-to-noise
ratio with the remaining two only faintly detected. All CO emission is
coincident with the dust and is in dynamically cold rotation. Four ETGs show
evidence of rapid central rotation; these are prime candidates for
higher-resolution ALMA observations to measure the black hole masses. In this
paper we focus on the molecular gas and continuum properties. Total gas masses
and H column densities for our five CO-bright galaxies are on average
and cm over the kpc-scale
disks, and analysis suggests that these disks are stabilized against
gravitational fragmentation. The continuum emission of all seven galaxies is
dominated by a central, unresolved source, and in five we also detect a
spatially extended component. The 230 GHz nuclear continua are modeled as
power laws ranging from to within the
observed frequency band. The extended continuum profiles of the two
radio-bright (and CO-faint) galaxies are roughly aligned with their radio jet
and suggests resolved synchrotron jets. The extended continua of the CO-bright
disks are coincident with optically thick dust absorption and have spectral
slopes that are consistent with thermal dust emission.Comment: 20 pages, 10 figures; accepted for publication in Ap
Titanium Nitride Films for Ultrasensitive Microresonator Detectors
Titanium nitride (TiNx) films are ideal for use in superconducting
microresonator detectors because: a) the critical temperature varies with
composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~
100 Ohm cm, facilitating efficient photon absorption and providing a large
kinetic inductance and detector responsivity; and c) TiN films are very hard
and mechanically robust. Resonators using reactively sputtered TiN films show
remarkably low loss (Q_i > 10^7) and have noise properties similar to
resonators made using other materials, while the quasiparticle lifetimes are
reasonably long, 10-200 s. TiN microresonators should therefore reach
sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP
Equilibration through local information exchange in networks
We study the equilibrium states of energy functions involving a large set of
real variables, defined on the links of sparsely connected networks, and
interacting at the network nodes, using the cavity and replica methods. When
applied to the representative problem of network resource allocation, an
efficient distributed algorithm is devised, with simulations showing full
agreement with theory. Scaling properties with the network connectivity and the
resource availability are found.Comment: v1: 7 pages, 1 figure, v2: 4 pages, 2 figures, simplified analysis
and more organized results, v3: minor change
A conjecture on Exceptional Orthogonal Polynomials
Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of
Sturm-Liouville problems and generalize in this sense the classical families of
Hermite, Laguerre and Jacobi. They also generalize the family of CPRS
orthogonal polynomials. We formulate the following conjecture: every
exceptional orthogonal polynomial system is related to a classical system by a
Darboux-Crum transformation. We give a proof of this conjecture for codimension
2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this
analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The
classification includes all cases known to date plus some new examples of
X2-Laguerre and X2-Jacobi polynomials
Surface treatments to modulate bioadhesion: A critical review
On account of the recent increase in importance of biological and microbiological adhesion in industries such as healthcare and food manufacturing many researchers are now turning to the study of materials, wettability and adhesion to develop the technology within these industries further. This is highly significant as the stem cell industry alone, for example, is currently worth £3.5 million in the United Kingdom (UK) alone. This paper reviews the current state-of-the-art techniques used for surface treatment with regards to modulating biological adhesion including laser surface treatment, plasma treatment, micro/nano printing and lithography, specifically highlighting areas of interest for further consideration by the scientific community. What is more, this review discusses the advantages and disadvantages of the current techniques enabling the assessment of the most attractive means for modulating biological adhesion, taking in to account cost effectiveness, complexity of equipment and capabilities for processing and analysis
Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective
Inference and optimization of real-value edge variables in sparse graphs are
studied using the Bethe approximation and replica method of statistical
physics. Equilibrium states of general energy functions involving a large set
of real edge-variables that interact at the network nodes are obtained in
various cases. When applied to the representative problem of network resource
allocation, efficient distributed algorithms are also devised. Scaling
properties with respect to the network connectivity and the resource
availability are found, and links to probabilistic Bayesian approximation
methods are established. Different cost measures are considered and algorithmic
solutions in the various cases are devised and examined numerically. Simulation
results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated,
Figs. 1 to 3 replace
A study of the static yield stress in a binary Lennard-Jones glass
The stress-strain relations and the yield behavior of model glass (a 80:20
binary Lennard-Jones mixture) is studied by means of MD simulations. First, a
thorough analysis of the static yield stress is presented via simulations under
imposed stress. Furthermore, using steady shear simulations, the effect of
physical aging, shear rate and temperature on the stress-strain relation is
investigated. In particular, we find that the stress at the yield point (the
``peak''-value of the stress-strain curve) exhibits a logarithmic dependence
both on the imposed shear rate and on the ``age'' of the system in qualitative
agreement with experiments on amorphous polymers and on metallic glasses. In
addition to the very observation of the yield stress which is an important
feature seen in experiments on complex systems like pastes, dense colloidal
suspensions and foams, further links between our model and soft glassy
materials are found. An example are hysteresis loops in the system response to
a varying imposed stress. Finally, we measure the static yield stress for our
model and study its dependence on temperature. We find that for temperatures
far below the mode coupling critical temperature of the model (),
\sigmay decreases slowly upon heating followed by a stronger decrease as
\Tc is approached. We discuss the reliability of results on the static yield
stress and give a criterion for its validity in terms of the time scales
relevant to the problem.Comment: 14 pages, 18 figure
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample
We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe
Engineered swift equilibration of a Brownian particle
A fundamental and intrinsic property of any device or natural system is its
relaxation time relax, which is the time it takes to return to equilibrium
after the sudden change of a control parameter [1]. Reducing relax , is
frequently necessary, and is often obtained by a complex feedback process. To
overcome the limitations of such an approach, alternative methods based on
driving have been recently demonstrated [2, 3], for isolated quantum and
classical systems [4--9]. Their extension to open systems in contact with a
thermostat is a stumbling block for applications. Here, we design a
protocol,named Engineered Swift Equilibration (ESE), that shortcuts
time-consuming relaxations, and we apply it to a Brownian particle trapped in
an optical potential whose properties can be controlled in time. We implement
the process experimentally, showing that it allows the system to reach
equilibrium times faster than the natural equilibration rate. We also estimate
the increase of the dissipated energy needed to get such a time reduction. The
method paves the way for applications in micro and nano devices, where the
reduction of operation time represents as substantial a challenge as
miniaturization [10]. The concepts of equilibrium and of transformations from
an equilibrium state to another, are cornerstones of thermodynamics. A textbook
illustration is provided by the expansion of a gas, starting at equilibrium and
expanding to reach a new equilibrium in a larger vessel. This operation can be
performed either very slowly by a piston, without dissipating energy into the
environment, or alternatively quickly, letting the piston freely move to reach
the new volume
- …
