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Inference and optimization of real edges on sparse graphs: A statistical physics perspective
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Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe ap-
proximation and replica method of statistical physics. Equilibrium states of general energy functions involving
a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied
to the representative problem of network resource allocation, efficient distributed algorithms are also devised.
Scaling properties with respect to the network connectivity and the resource availability are found, and links to
probabilistic Bayesian approximation methods are established. Different cost measures are considered and
algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full

agreement with the theory.
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I. INTRODUCTION

The links between statistical physics models and a variety
of inference and optimization problems have been signifi-
cantly strengthened over the last decade [1]. Two aspects of
these links have been exploited. Macroscopically, using the
statistical physics framework, one describes typical proper-
ties of the problem and provides valuable insight into its
generic characteristics. Microscopically, established tech-
niques of statistical physics such as the cavity method have
been used for devising efficient inference algorithms, some
of which have been independently discovered and used in
other research communities [2-5].

Most studies so far, both within and outside the statistical
physics community, have focused on cases of discrete vari-
ables. Among the recently successful examples using meth-
ods of statistics-based mechanics, one can mention hard
computational problems [6] and error-correcting codes [7].
Statistical mechanical approaches to learning of discrete
variables have also been considered on tree structures [8].

On the other hand, networks of continuous variables were
much less explored. One of the main reasons for this limited
activity is the difficulty in applying message passing ap-
proximation algorithms [2,3] in this case, as the discrete
messages passed between variables become functions of real
variables. Applied message passing for systems of real vari-
ables typically relies on modeling the functions using a re-
duced number of parameters [9].

In the statistical physics community there have been re-
cent attempts to simplify the messages for continuous vari-
ables. For example, a step forward was made in Ref. [10] to
parametrize the messages using eigenfunction decomposition
for special cases. Furthermore, the continuous variables
treated by these methods are localized on nodes, whereas
many interesting problems, such as the resource allocation
problem presented here (and partially in [11,12]), involve
real variables defined on links between nodes.

In this paper we study a system with real variables that
can be mapped onto a sparse graph and suggest an efficient
message-passing approximation method for inference and
optimization. We first formulate the problem at a general
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temperature; the message-passing algorithm we present here
as well as the related analysis are primarily general inference
algorithms. In this paper, however, we are particularly inter-
ested in the optimal, zero temperature solution that reduces
the task to an optimization problem.

Global optimization techniques, such as linear or qua-
dratic programming [13], can successfully solve many of
these problems. However, message-passing approaches have
the potential to solve global optimization problems via local
updates, thereby reducing the growth in computational com-
plexity from cubic to linear with the system size. An even
more important practical advantage is its distributive nature
that is particularly suitable for distributive computation in
large or evolving networks and does not require a global
optimizer.

We focus on a prototype for optimization, and use the
example of resource allocation as a vehicle to demonstrate
the potential of our method, both for gaining insights into the
main properties of the system and as an efficient optimiza-
tion algorithm. Our method is efficient since the messages
consist of only the first and second derivatives of the vertex
free energies derived from our analysis. The key to the suc-
cessful simplification, not needed for the simpler case of dis-
crete variables, is that the messages passed to a target node
are accompanied by information-provision messages from
the target node, to first determine the working point at which
the derivatives should be calculated.

The problem of resource allocation is a well-known net-
work problem in the areas of computer science and opera-
tions management [14,15]. The problem itself is quite gen-
eral and is applicable to typical situations where a large
number of nodes are required to balance loads and/or re-
sources, such as reducing Internet traffic congestion and
streamlining network flow of commodities [16,17]. In com-
puter science, many practical algorithmic solutions have
been proposed to distribute the computational load between
computers connected in a network. They usually are heuristic
and focus on practical aspects (e.g., communication proto-
cols). The problem we are addressing here is more generic
and, in the context of computer networks, is represented by
nodes of some computational power that should carry out
tasks; subtasks are then moved around such that all demands
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will be satisfied while the migration of (sub-)tasks is mini-
mized.

In Sec. II we will introduce the general model, followed
by a replica-based analysis in Sec. III and subsequently by a
Bethe approximation-based analysis in Sec. IV. A message-
passing algorithm for the problem of resource allocation will
be presented in Sec. V followed by the derivation of scaling
laws in the limit of high connectivity in Sec. VI. Numerical
results for Secs. III-VI will be presented in Sec. VII. We will
then extend the model to the case of general cost functions in
Sec. VIII, highlighting strengths and weaknesses of our ap-
proach. We will conclude the presentation with a summary
and point to future research directions.

II. MODEL

The problem we are addressing here is a generic version
of resource allocation and serves as an example of a sparsely
connected system of real variables that should be optimized
with respect to some general cost. It is represented by nodes
of some computational power that should carry out tasks.
Both computational powers and tasks will be chosen at ran-
dom from some arbitrary distribution. The nodes are located
on a randomly chosen sparse network of some connectivity.
The goal is to migrate tasks on the network such that de-
mands will be satisfied while the migration of (sub-)tasks is
minimized. We focus here on the satisfiable case where the
total computing power is greater than the demand, and where
the number of nodes involved is very large.

The sparse network considered has N nodes, labeled i
=1,...,N. Each node i is randomly connected to c¢ other
nodes. The connectivity matrix is given by A;=A;=1,0 for
connected and unconnected node pairs, respectively. A link
variable y;; is defined on each connected link from j to i. We
focus on the case of intensive connectivity ¢~ O(1) <N; and
restrict the problem to the fixed connectivity case although
both the analysis and the algorithm devised on its basis can
handle a general connectivity profile.

We consider a general energy function (cost)

E= % Aybyy) + 2 WAyl Ay = 1),
ij i

where the summation (ij) is made over all node pairs, and A;
is a quenched variable defined on node i. In the context of
probabilistic inference, y;; may represent the coupling be-
tween observables in nodes j and i, ¢(y;;) may correspond
to the logarithm of the prior distribution of y;, and
(A {y;j| A;j=1}) the logarithm of the likelihood of the ob-
servables A;. Since the cost is independent of the direction of
the currents in many applications, we focus on the case that
¢(y) is a general even function of y. In the context of re-
source allocation, y;;=-y; may represent the current from
node j to i, ¢(y;;) may correspond to the transportation cost,
and y(A;,{y;;| A;;=1}) the performance cost of the allocation
task on node i, dependent on the node capacity A;; the ca-
pacity of a node is defined as its computational capability
minus its computational demand, and is randomly drawn
from a distribution p(A,).
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III. REPLICA ANALYSIS

To make the analysis more concrete and strengthen the
link to the resource allocation problem, we keep the term
&(y;;) general and, aiming to satisfy the capacity constraints,
set (A {y;| A;=1)=In[O(-2;A;;y;;—A))+€], where e
—0 and O is the step function. This reduces the problem to
the load balancing task of minimizing the energy function
(cost) E=2;;A;;¢(y;;), subject to the constraints on the re-
sources of nodes i,

J

An alternative formulation is to consider the dual of the
original optimization problem. Introducing Lagrange multi-
pliers, the function to be minimized becomes

L= % Aij¢(Yij) + E Mz(E Ay + Ai>~ (2)
ij i j

Optimizing L with respect to y;;, one obtains
yij=[¢,]_1(/-l“j_1u'i)v (3)

where u; is referred to as the chemical potential of node i,
and ¢’ is the derivative of ¢ with respect to its argument.
This can be interpreted as the current being driven by the
potential difference.

Since the probability of finding loops of finite lengths is
vanishing in large sparse networks, the structure of a sparse
network is locally a tree. Thus, given a configuration of cur-
rents {y;;}, one can set the current potential v; of a node to an
arbitrary value, and assign v; of its neighbors according to
v;=v;+y;;. Repeating this assignment process to next nearest
neighbors and so on, the current potentials of all nodes in the
tree can be determined. Hence the current potentials can be
considered as valid independent variables as the current vari-
ables used originally. This implies that we can consider the
optimization problem in the space of the current potentials.
Since the energy function is invariant under the addition of
an arbitrary global constant to the current potentials of all
nodes, we introduce an extra regularization term eEi,u?/ 2 to
break the translational symmetry, where e— 0. [Note that the
current potentials v are different from the chemical potentials
M, which are the Lagrange multipliers of the dual formula-
tion in Eq. (2). Only for the quadratic cost ¢(y)=y*/2 can
the current be expressed in terms of the difference in chemi-
cal potentials. Even in this case, the two potentials may differ
by a nonvanishing constant since the resource constraints in
Eq. (1) imply that the maximum of the Lagrange multipliers
is 0, whereas the current potentials minimize eE,-viz/ 2 and are
unlikely to have a maximum value of 0.] The corresponding
partition function is

Z= H J dViH ®|:2 A”(V] - Vi) + A1:|
i i Jj
Be >
Xexp{— 3(2) Ajjp(v;—v) - 72 v; } . (4)
i i

The replicated partition function [1], at a temperature
T= 3", averaged over all network configurations of connec-

011115-2



INFERENCE AND OPTIMIZATION OF REAL EDGES ON ...

tivity ¢ and capacity distributions p(A;), is given by

(Z")an= NAE I1

0,1 i

5@ A,,.-c) f dAp(A)
><£[l lfdvf‘@(Z Ay - ﬁ)m,ﬂ

B2 Ay(v =) -

(ij)a

2 ( “)2)

(5)

Here N=X A0, 111;0(2;A;;—c) is the total number of graphs
with connect1v1ty c. ThlS can be easily shown to be [18]
N=exp{N[—(c/2)+(c/2)In(cN)~In c!]}.

The interaction coupling current potentials of different
nodes makes it difficult to decouple them in order to define
macroscopic order parameters. Nevertheless, additional ex-
pansions detailed in Appendix A also show that it is possible
to disentangle neighboring node indices. (This justifies the
formulation of the optimization in the space of the current
potentials {;} rather than that of the currents {y;}.) This
leads to the following definition of the order parameters:

Xexp(

gff—24w42mﬁﬁﬂemWWWa<®

VeN

and its conjugate Qr,s. Following the analysis of [18] and
averaging over the connectivity tensor .4 one finds

c ~
<Zn>A,A =eXp N 5 - CE Qr,sQr,s
r.s

n fdAp(A)l;[ (fdvaf:d)\ajc;—;j)

X exp{z (i):a()\cﬁ cv,) — %e(va)zﬂxc ,

a

(7)
where
XEKMHFAYWV
1 Ta ~d\e
R | (—i)\a——) -BI)
2r,s ' a roz!soz! dy Y=V,
(8)

The somewhat unusual indices of the order parameters Q,

and Qr’s, the vectors r and s, represent n-component vectors
(rys...,r,) and (sq,...,s,), respectively. This is a result of
the specific interaction considered which entangles nodes of

different indices. The order parameters Q, and Q,,S are
given by the extremum condition of Eq. (7), i.e., via a set of
saddle point equations with respect to the order parameters.
To facilitate the solution, we introduce the generating func-
tion of Py(z) and its inversion,
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Pin=3 0, T,

a*

)

Qr,s = H <i>raps(z)

@ dz a z=0

Eliminating Qr,s, and substituting the saddle point equation
of Q¢ into Py(z) in Eq. (9), one finds the recursion relation

Py(z) = fdAp(A)H[fdvf d\ J—

Xexp(i):a()\a +CVy—2,) — %(Va)2> ]

d \%
ST P05, L) o
Sy k=1 ka s‘k dy y=v,
XIT (vp)e, (10)

where Dp is a constant given in Eq. (A9). Note that Py(z) is
expressed in terms of ¢—1 functions Psk(V) (k=1,...,c-1),
integrated over v and summed over s;. This structure is typi-
cal of the Bethe lattice description of networks of connectiv-
ity ¢, explained in Sec. IV, where nodes are divided into
generations. Each node provides input to an ancestor node
and receives input from c—1 descendent nodes. This forms a
tree structure, in which the state of a node depends on those
of its subsequent generations.

In order to derive a set of recursive equations one should
make an assumption about the inherent symmetries of the
problem. Here we employ the replica symmetric ansatz. In
previous treatment of related problems, the order parameters
are represented as an integral over moments of the corre-
sponding probability distribution, incorporating the permuta-
tion invariance of the replica indices [7,18]. Generalizing to
the case of Pg(z), which is an order parameter depending on
the continuous variables z, the ansatz takes the form

P(z) = <H (f dvR(za,VT)V‘a)> , (11)

A

where T represents the tree terminated at the vertex node
with current potential v, providing input to the ancestor with
chemical potential z, and (- --), represents the average of the
capacities of each node of the tree over the distribution p(A).
Note that the replicas are coupled through their common
dependence on the quenched variables A. This is in contrast
to conventional derivations, such as the SK model [1], in
which the dependence on the disorder is integrated out, lead-
ing to more explicit inter-replica dependencies.

The resultant recursion relation for the function R is inde-
pendent of the replica indices and hence remains valid in the
n—0 limit. It is given by
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c—1
1
R(z,v|T) = D_H [f dvR(v, Vk|Tk)]
Rk=1
c—1
X@(E Vk—cv+z+AV(T))
k=1

c—-1
Xexp|:— %Iﬂ -ﬁkE d(v- Vk)} . (12)
=1

where Dy, is a constant given in Eq. (A10), and T, represents
the tree terminated at the kth descendent of the vertex. Ay
is the capacity of the vertex of the tree T. Equation (12)
expresses R(z,v|T) in terms of c—1 functions R(v,v;|Ty)
(k=1,...,c—1), integrated over v,. Again, this is character-
istic of the Bethe lattice structure. Furthermore, except for
the factor exp(—Ber?/2), a self-consistent solution of R is
that it is a function of y= v—z, which is interpreted as the
current drawn from a node with current potential v by its
ancestor with current potential z. Hence we will express the
function R as the product of a vertex partition function Zy
and a normalization factor W, which contains any residual
dependence on v. Since € is taken to approach zero in the
analysis, it is expected that W should approach a constant
independent of v. Hence we let R(z, v|T)=W(v)Z,(y|T). As
explained in Appendix A, in the limit e— 0, the dependence
on v and y decouples; this enables one to derive a recursion
relation for the vertex free energy [19] F(y|T)=
~TIn Zy(y|T) when a current y is drawn from the vertex of
a tree T [20],

c—1 c—1
Fyy|T)==Tny [] (f dyk)®<EYk—y+AV(T)>

k=1 k=1

c—1
Xexp{— ,BkE [Fy(yl Ty + ¢(J’k)]]
=1

ol 11 ool S

k=1

Xexp |: - B2 [Fy(ylTo) + ¢(yk)]]
k=1

A
(13)

In the zero temperature limit, this recursion relation reduces
to

Fy(y|T) = min
{}'k|21f; { Viy+Aym)=0

c—1
[2 [Fy(yl Tp) + ¢(yk)]]

} k=1

- min [E [Fy(y|To) + ¢(Yk)]:| .
A

{Yk|EZ=1Yk+Av>0} k=1
(14)

The solution of Egs. (13) and (14) can be obtained numeri-
cally in a recursive manner, since the vertex free energy of a
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node depends on its own capacity and the disordered con-
figuration of its descendents.

Using the replica approach, and following the derivation
of Appendix A, the averaged free energy of the network is
given by

(F)p==N\ Tln H(fdyk>®<z)%+/\v>
k=1

k=1

. (15)
A

Xexp[— B [Fy(y|Ty) + ¢(yk)]:|
k=1

The current distribution and the average energy per link
can be derived, using the calculated vertex free energy, by
integrating the current y’ in a link from one vertex to an-
other, fed by the trees T and T,, respectively; the obtained
expressions are P(y)=(8(y—y')), and (¢)=(d(y')), where

fdy' CXP[— ﬂFL(y,|Tl’T2)](.)
(@), = , (16)
fdy’ exp[— BF(y'|T.T,)]

A
with
Fi(y'|T,Ty) =Fy(y'|T)) + Fy(=y'|To) + ¢(y'). (17)

IV. RECURSION RELATION AND FREE ENERGY
IN THE BETHE APPROACH

The results in Sec. III can be interpreted using the Bethe
approach. Since the connectivity c is low, the probability of
finding a loop of finite length on the graph is low, and the
Bethe approximation well describes the local environment of
a node. In this approximation, a node is connected to ¢
branches in a tree structure, and the correlations among the
branches of the tree are neglected. In each branch, nodes are
arranged in generations. A node is connected to an ancestor
node of the previous generation, and another c—1 descendent
node of the next generation.

Consider a vertex V(T) of capacity Ayr), and a current y
is drawn from the vertex. At a temperature 7= 3~ I one can
write an expression for the free energy F(y|T) as a function
of the free energies F(y,|T,) of its descendants that branch
out from this vertex

c—1 c—1
FoIT) =-Tn) [] (J dyk)®<2 Y-y +Av)

k=1 k=1

c—1
XCXP[— B [Fy(y|T)) + ¢(yk)]:| . (18)
k=1

where T represents the tree terminated at the kth descendent
of the vertex. The free energy can be considered as the sum
of two parts

F(y|T)=NTFav+FV(y|T)7
where Ny is the number of nodes in the tree T, F, is the

average free energy per node, and F\(y|T) is the vertex free
energy.
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This allows one to decompose the free energy into

c-1
(ENTk+ 1>Fuv+FV(y|T)
k=1

c-1 c-1
=ENTkFav_T1n H(fdyk>
k=1

k=1

c-1
X®(E Yi—y+ Avm)

k=1

c-1
Xexp[— B2 [Fy(y|Ty) + ¢(yk)]:| . (19)
k=1

To determine the F,,, we consider the effects of adding a
vertex V which is fed by ¢ individual trees Ty, ...,T,. The
total free energy is then

(ECINTk+1)FaU
=—{ Tl g(fdyk>®(é)7k+/\v)

XGXP[— B (Ng F oy + Fy(| To) + <Z'>()’1<)):| .
A

k=1
(20)

Rearranging the terms one obtains a recursion relation
identical to Eq. (13). The average free energy per node is
given by the second term of Eq. (13) and has the same ex-
pression for the free energy as in the replica approach (15).

The recursion relation can also be recast into a form remi-
niscent of those commonly appearing in Bethe lattices of
Ising spin variables, such as in Refs. [6,7,18]. This is
achieved by considering the probability distribution of vertex
free energies P[Fy]. Using Eq. (14),

P[Fy]= JdAVp(AV)E DFyP[Fy,]

><1;[ 5(— Tln 1:[1 (J dyk>®(§yk_y+AV)

k=1

c—1
Xexp[— B2 [Fulyy) + ¢(yk)]]
k=1

—<F>A—Fv(y))- (21)

Comparing with Bethe lattices of Ising variables, the vertex
free energy F'y plays the role of a cavity field. The difference
here is that the distribution to be iterated is no longer a func-
tion of a single cavity variable. Rather, the distribution is
defined in the space of cavity free energy functions, since we
are dealing with continuous variables. This parallelism en-
ables us to solve the recursion relation by population dynam-
ics. At each step of this approach, a new ancestor node is
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generated at random, and its vertex free energy is updated.
It is interesting to point out that the iterative equations
(13) can be directly linked to those obtained from a prin-
cipled Bayesian approximation, where the logarithms of the
messages passed between nodes are proportional to the ver-
tex free energies. This is shown explicitly in Appendix B.

V. MESSAGE-PASSING ALGORITHM

The local nature of the recursion relation (13) points to
the possibility that the network optimization can be solved
by message-passing approaches. However, in contrast to
other message-passing algorithms which pass conditional
probability estimates of discrete values to neighboring nodes,
the messages in the present context are more complex, since
they are functions F(y|T) of the current y.

The derivation of the algorithm can be viewed as a mini-
mization of the cost function with respect to current changes
under the capacity constraint at the neighboring nodes. When
the cost is quadratic, the impact of current changes can be
described through the first and second derivatives with re-
spect to the vertex free energy. As will be explained at the
end of this section, this two-component message is sufficient
to provide the exact solution, as long as the algorithm con-
verges.

We follow this route and simplify the message to two
parameters, namely, the first and second derivatives of the
vertex free energies. Let

(A;j,B;j) = [(7FV()’ij|Tj)/f9)’ij»32Fv()’ij|Tj)/f9yi2j]

be the message passed from node j to i. Based on the mes-
sages received from the descendents k #i, the vertex free
energy from j to i can be obtained by minimizing the free
energy in the space of the current adjustments e drawn
from the descendents. Using Eq. (14), we minimize

1
Fij= E Ajk Ajksjk+

2 2Bjksjk+ ]ks]k+ qﬁjksjk , (22)
1

subject to the constraint

> Ajyit+ep) —yij+ A =0, (23)
ki

where ¢/ . and d)"k represent the first and second derivatives
of ¢(y) at Y=Yjks respectlvely Introducing the Lagrange mul-
tiplier w;;, the optimal solution is given by

" 12 Al = Ay + 677

iji= U (24)
T 2 Bji+ ¢y

where
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> Aulyi— A+ b)) B+ ¢ 1+ A -y

k#i

/.Ll'j =min

k#i

The first and second derivatives of F; with respect to y, ; lead

ij
to the forward message (A;;, B;;) from node j to i,

ij»
o O(-p+e
> Aj(Bjy + ‘15;,1)_1

k#i

Aij —— i By (26)

We note in passing that when the descendent currents y
change continuously, both the vertex free energy (24) and the
chemical potential (25) change continuously for functions
¢(y) with continuous first derivatives. Hence for the qua-
dratic load balancing task, defined by ¢(y)=y*/2, a self-
consistent solution of the recursion relation Eq. (14) consists
of vertex free energies which are piecewise quadratic with
continuous slopes. This makes the two-parameter message a
very precise approximation.

In principle, if the forward messages consist of the full
vertex free energy functions, then they are already sufficient
for the optimization task. However, since the messages are
simplified to be the first and second derivatives of the vertex
free energies, each node needs to estimate the optimal cur-
rents by approximating the vertex free energy function as a
quadratic function. Hence the remaining step of the algo-
rithm is the determination of the drawn current y;; at which
the derivatives comprising the messages should be com-
puted. This determination of the working point is achieved
by passing additional information-provision messages among
the nodes, a step not present in conventional message-
passing algorithms. The following two methods are proposed
for this purpose.

In the first method, when messages are sent from node j
to ancestor node i, backward messages yj; computed from
the same optimization steps are sent from node j to the de-
scendent nodes k # i, informing them of the particular argu-
ments to be used for calculating subsequent messages. From
Egs. (22) and (23), this backward message is given by

Aj+ ¢£k + Mij (27)
Bj+ ¢
In the second method, node j first receives the messages

(Aj;,B);) and current y;; from the ancestor node 7, and updates
the current from y;; to y;;+¢&;; by minimizing the total cost

Yik < Yijk —

1
2
Eij=Aje;+ EBU‘SU +Aj(=yij— &= Vji)

1 ! 1 /"
+ EBji(_ Yij— &ij _yji)2 + e+ E‘ﬁijsizj' (28)

In Eq. (28), the first two terms represent the message from i
to j, the next two terms from j to i, and the last two terms the

0. (25)

> Aj(B i+ (b}lk)_l

transportation cost in link (ij). The optimal solution is

Bjjyij _Aij =Byt Aji - i’/‘ + ¢;"jyij

; (29)
Bij+Bji+ ¢

Yik <
Both methods work well for the quadratic cost function.

Implicit in the information-provision messages is the in-
dependent update of the currents y; and y;; in the opposite
directions of the same link. This allows us to use the criterion
yij==V;; as a check for the convergence of the algorithm. We
have used this in our simulation program by requiring the
root mean square average of y;;+y;; to be less than a thresh-
old. Another usage of the information-provision messages is
in monitoring the optimal cost function during simulations.
This saves the extra step of calculating the current associated
with a link in the conventional Bethe approach.

An alternative distributed algorithm can be obtained by
iterating the chemical potentials of the nodes. The Kiihn-
Tucker condition requires that the terms wu,(2;A;;y;;+A,) in
Eq. (2) vanish. Eliminating y;; in terms of the chemical po-
tentials, w; can be expressed in terms of u; of its neighbors,
namely,

pi=min[g;'(0),0];  gi(x) = 2 AT (=) + Ay,
J

(30)
For the quadratic load balancing task, ¢(y)=y?/2 and

Mi:minl%(? Aijﬂj+Ai),0]. (31)

This provides a local iteration method for the optimization
problem. We may interpret this algorithm as a price iteration
scheme by noting that the Lagrangian in Eq. (2) can be writ-
ten as

L= AjiL;j + const, (32)
(if)
where
L= ¢()’ij) + (pi— :uj)yij' (33)

Therefore the problem can be decomposed into independent
optimization problems, each for a current on a link. w; is the
storage price at node i, and each subproblem involves bal-
ancing the transportation cost on the link, and the storage
cost at node 7 less that at node j, yielding the optimal solu-
tion. This provides a pricing scheme for the individual links
to optimize, which simultaneously optimizes the global per-
formance [22].

It can be easily verified that the message-passing algo-
rithm, in the two-parameter approximation, yield solutions
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identical to the price iteration algorithm, which is exact, as
long as the connectivity is sparse and the algorithms con-
verge. Indeed, simulations provided in Sec. VII show that the
two algorithms yield excellent agreement with each other.

One can proceed with the verification by noting from Eq.
(27) that Mij:—qufk—A i« Tor all k# i at the steady state. Since
i is independent of the node i receiving the message, one
can write w; as w;. Similarly, using Eq. (26), Ay=—u;=
— .. We then have ¢jfk: i~ pmj, whose inverse relation is Eq.
(3). The resource constraint Eq. (1) then leads to Eq. (30).

The result that the first order message converges to the
exact result of the chemical potential at the steady state jus-
tifies the simplification of the message to two parameters. It
illustrates that higher order messages are not required for the
precision of the optimal solution, as long as the algorithm
converges. This is natural for the quadratic cost, for which it
can be verified that the vertex free energies are piecewise
quadratic functions of the currents with continuous slopes. In
addition, exact solutions can be found for other cost func-
tions, as described in Sec. VIII. Though the second order
messages do not play a role in the final solution, they are
useful in tuning the intermediate steps for faster conver-
gence. The situation is reminiscent of the use of both gradi-
ent and curvature information in many gradient-based opti-
mization techniques.

VI. HIGH CONNECTIVITY LIMIT

Both the recursive equation (14) and message-passing
equations (25) and (26) can be solved numerically as will be
shown in the next section. However, scaling laws of the
quantities of interest can also be derived analytically in the
limit of high connectivity.

We restrict the analysis to the case of quadratic cost func-
tion ¢(y)=y?/2. In the limit of large c, Eq. (26) converges to
the result

Bij = M , (3 4)
c
and the currents scale as ¢~!. Therefore the task of satisfying
the capacity constraints is shared by a fraction of O(1) of the
descendents. As a result, the collective effects of the descen-
dents on a node can be expressed in terms of the statistical
properties of the descendents. Using this scaling property of
the currents, Eq. (26) reduces to

Aij:max(%[z Ay - Aj},o). (35)
ki

By virtue of the law of large numbers, it is sufficient to
consider the mean m, and variance o‘i of the messages A;;.
Respectively, they scale as ¢™' and ¢™* with 2, ;4 ,A ; being
self-averaging. Hence we can write

1
Ajj= Z(CmA —Aj)O(cmy = A)). (36)

Averaging over A, drawn from a Gaussian of mean (A)
and variance 1 used in our numerical studies, one obtains a
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self-consistent expression for the parameter £=cm,—(A),

2
En

¢
<A>=f Dz(é-z) - &= —=— - §H(9). (37)
oo N2

A. Current distribution

To obtain the current distribution, one considers the vertex
free energies of both ends of a link. For a current y;; flowing
from j to i, the total energy is given by

O(=py) » OCm) » 1,
E=A;y;+ TclLyij —Ajyii+ —ZCLyij + Eyij’

(38)

where we have approximated the working points of the mes-
sages to be y;=0. This is justified since the magnitudes of
the messages are O(c™') and y;;~ ¢~'. Minimizing the energy
with respect to the current y;;, one finds

1
Yij = ;[(CmA = A)O(cmy = A;) = (emy - Aj)®(CmA - A_j)]-

(39)
Hence the current distribution is given by
P(y)= f dAp(Ay) f dAyp(As)
1
X ;|(CmA = A)O(cmy—Ay)
= (cmy = Ay)O(cmy = Ay)| —)’}- (40)

For the Gaussian distribution of capacities, one obtains

?y? (cy-&?
exp| — T ey - 2¢ exp| — —2
POy =2 \“”4 alc? H( \E ) +2H(9) N2/ c?
+H(§)?3(y). (41)

This shows that the distribution P(cy)/c, obtained by rescal-
ing the argument by ¢!, is independent of ¢, and depends
solely on the average capacity (A) through £ In particular,
the fraction of idle links is given by

P(y=0)=H(®". (42)

The physical picture of this scaling behavior is that the total
current required by a node to satisfy its capacity constraint is
shared by the links.

B. Average energy

Using Eq. (39), the average energy per link can be written
as
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(@)= 5{((emy = AP0 (em, - A)
- <(CmA - A)®(CmA - A)>2}- (43)

For the Gaussian capacity distribution, it becomes

(9= 5[0 - 1,7, (@)

where

—-&n

¢
11(§)=J Dz(§-2) = e\Er +&H(-§), (45)

-2

4
AGE j De6=2= £ =+ (€ + DH(-8). (40)

Y

We are also interested in how the energy is distributed in
the network. Consider the average energy per link (¢|A)

among those links connected to nodes of capacity A. Using
Eq. (39),

(BlA)= é f dA>p(Ay)[(cmy = A)B(cmy — A)

X (emy — Ay)O(emy — Ay) . (47)

For the Gaussian capacity distribution, this becomes

(BlA)= ﬁ{lz@) ~[11(&° = A’10[1,(§) — ATy (48)

C. Chemical potential distribution

To obtain the distribution of the chemical potentials, one
follows a similar treatment and considers a central node 0 fed
by ¢ descendents. Introducing a Lagrange multiplier to en-
force the capacity constraint, one replaces the energy mini-
mization problem by the Lagrangian

d (= o) 1 C
L= E |:A0/y01 + y(z)] + _y(z)] +um 2 yO] + AO .
j=1 2c 2 j=1

(49)

The currents are given by yg=—Ag;—u, and the chemical

potential by
(1 ;
m= mm(—[Ao - EAOJ-] ,O) .
C j=1

In the large ¢ limit, the approximated expression for u be-
comes

1
M= ;(AO_CmA)®(CmA_AO)’ (50)

and the chemical potential distribution is similarly derived,
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Ccmy

P(p) =

—00

dAp(AwEm ~emy) - u]

+ f dAp(A) &) (51

For the Gaussian capacity distribution, it reduces to
( (cp+ §)2>
exp| — B

271/ c?

P(u) = O(=w) +H(Eo(w). (52)

This shows that the distribution P(cu)/c, obtained by rescal-
ing the argument by ¢!, is independent of ¢ and depends
solely on the average capacity (A) through &. In particular,
the fraction of unsaturated nodes is given by

P(pu=0)=H({). (53)

D. Resource distribution

We define the resource at a node i by
ri=Ai+ E Aijyij- (54)
J

The currents are obtained by minimizing

O(-w) 1
E;= E Aij|:Aijyij + TCL}’,ZJ + 5)’12, (55)
j

subject to the constraints X;A;;y;+A;=0. Introducing the
Lagrange multiplier u; for the constraint, we obtain

r;=max[A; — cmy,0]. (56)

Hence the resource distribution is given by
0 Ccmy
P(r)= f dAp(A)S(A —cmy —r) + f dAp(A)&(r).
cmy —0
(57)
For the Gaussian capacity distribution, it reduces to

1
o]
P()=———

N1

O(r)+H(- &) 8(r). (58)

This shows that the resource distribution becomes indepen-
dent of ¢ in the large ¢ limit, confirming the picture that the
current in a link scales as ¢!, summing up to a total current
of ¥ satisfying the resource requirement of the nodes.

E. Dynamics

To analyze the dynamics in the limit of large ¢, one con-
siders random sequential updates using the algorithm pre-
sented in Sec. V. Time is divided into steps of size Ar
=1/cN. At each time step, a directed link from node j to i is
randomly chosen, such that each directed link is chosen ex-
actly once in each integer interval of time, and the messages
of the links are updated.
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The current yj, for a link feeding node j, is updated in the
backward messages corresponding to the forward ones from
Jj to i#k. (This implies that y; is updated K times in a time
step. As will be shown, the algorithm uses information up-
dated in the previous step to compute the optimal current.
Since the previous step lies in the previous interval, this ap-
proach is not the most efficient for monitoring the evolving
average energy.)

Denote the average of message A (1) over all links at time
t as my(1), and rii4(1) the expected value of A () when it is
updated at time 7. Then, for a time ¢ in the interval between f,,
and 79+ 1 this leads to the dynamical equation

dm,(t)

dr = n/;lA(t) - mA(to) for to =< to +1. (59)

Suppose the link ij is updated at time #, according to Eq.
(26). Then the average over link ij becomes

cmy (1)
ey (t) = f dAp(A)[cmy(t) = A]. (60)
For the Gaussian capacity distribution, this becomes
13
criy(1) =f Dz(£(1) - 2) =1,(£(1)), (61)

where &(t)=cmy(t)—(A). It is convenient to convert Eq. (59)
to a dynamical equation for &(z),

90 &) &)~ () for 1=

t<ty+1,

with the initial condition £(0)=—(A).

The dynamics of the average energy depends on whether
one adopts the backward or forward information-provision
method, described by Egs. (27) and (29), respectively. We
first consider the case of backward information provision.
Suppose the link from j to i is updated at time #; in the
interval between 1, and #,+ 1. Using Eq. (27),

]k( k) Ml]( 1]) (62)

where A (1) is given by Eq. (36) and 7, is the instant that
the link from k to j is previously chosen for update. With
probability 7o+1-1;, r; lies in the previous time interval
between 7,—1 and 1. Otherwise, 7, lies between 1, and ;.
To calculate the average energy <¢(t0+1)) one can ex-
press (y,k> in terms of the moments (A ,k( )X (,ulj(t,j)) and
(Aj(£;) pij(t;;)). Hence on averaging over all descendents ,
denoted as ( );, the second moment of A]k( k) is given via

Eq. (36) by
O B Y U
(Auti) W= = f diy(ty+1-1) +f dty,
to—1 fo

X f dAp(A)[emy(ty) - A]2®[CmA(t;k) - Al

(63)

Vilty) ==

For the Gaussian capacity distribution, this becomes
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<A]k( 2’ >k— 72(tij)a (64)

where

I(t) = {JO dt’(t0+1—t)+J dt

'}b(&(t’))- (65)
o~1 7o

Averaging over (ij) at time fy+1,

to+1

1 _
<Ajk(t;k)2>ijk = ?f drly(1), (66)

T

which can be simplified to

1 fo
<Ajk(t;k)2>ijk =2 l %f dtl,(&(1))

o1

to+1
+f dt(t0+1—t)12(§(t))]. (67)

0

A similar calculation follows for the second moment of
w;(t;;) at time £+ 1, leading to

to+1
<Mij(fij)2>ij = %f drl,(&(1)) (68)

0

for the Gaussian capacity distribution.
Similarly, the expression for the crossed moment in the
case of Gaussian capacity distribution is

1 -
A u£) it ijpe = = ?f artly()I(£(1)),  (69)

0

which can be simplified to

a

J 0 dﬂl(ar))}
ta—1

1
<Ajk(t;k)ﬂij(t,-j)>ijk =- —2{ l

to+1
X [f di(ty+1 - t)]l(g(t))}

1 010+] 2
+ E{J dtll(g(t))] . (70)

Hence the average energy per link in the case of Gaussian
capacity distribution is

0—

(Blio+ 1) = ﬁ{% | ameny
to—1

t0+1
. f dilry + 1= (&)

0

—2[ f 0 dﬂl(f(r»}
to—1

0—

o+l
X {f dr(ty+1 - t)h(f(t))}

0
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to+1 2 1o+l
_lf dtll(g(t)):| +f dtl,(&(t))

0 0

(71)

Next, we consider the case of forward information-
provision described by Eq. (29), whose large ¢ limit is given
by

Yijtij) = _A[j(t[_j) +Aji(t;i)7 (72)

where the link from j to i is updated at time #; in the time
interval between 7, and 7+ 1, £;; and 7}; are, respectively, the
instants that the links from j to i and from i to j are previ-
ously chosen for update. Derivation analogous to the back-
ward information-provision method yields

I

@i+ =351 |

11

dt12(§(t))—2l f ' drll(g(t))}
to—1

-

to+1 to+1
x[f dtil(t):|+J dil,(1) ¢, (73)

0 0

which can be simplified to

3 ("
(apr )= 5515 [ )
fo-1

o+l
N f (i + 1 = (D)

0

—2{ f oldt11(§(t))}

0—

to+1
x[f di(ty+ 1 —t)Il(t):|

0

to 2
- [ f dtlz(&(t))} : (74)
ty—1

-
Equation (72) shows that the forward information-provision
method uses only outdated information to calculate the cur-
rent. Consequently, the convergence of the average energy is
slower than that of the backward information-provision
method by about half a step.

VII. NUMERICAL RESULTS

To examine the accuracy of the theoretical results and the
efficacy of the message-passing algorithm of Sec. V we con-
ducted a series of numerical experiments. First, we solved
numerically the recursive equation (14) using population dy-
namics for various connectivity values and obtained various
quantities of interest from it, including the energy, current,
and chemical potential distribution. Second, we carried out
simulations using the algorithms of Egs. (26) and (25) and
compared the results to those obtained from the numerical
simulations. We then compared the scaling properties of the
results with respect to the connectivity with the theoretical
scaling obtained in Sec. VI. All experiments in this section
have been carried out using the quadratic cost ¢(y)=y/2.
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To solve numerically the recursive equation (14) we have
discretized the vertex free energy functions Fy(y|T) into a
vector, whose ith component is the value of the function
corresponding to the current y;. To speed up the optimization
search at each node, we first find the vertex saturation cur-
rent drawn from a node such that: (a) the current drawn by
each descendent node separately optimizes its own vertex
free energy plus the transportation cost to the node being
considered. For descendent nodes k, this current yz is given
by

Vi= argmin, [F(y,|T,) + ¢(y,)]. (75)

(b) The resource of the node considered is just used up. For
node j, its vertex saturation current y‘; is given by

yi= 2 A+ A (76)
k#j

For current below this saturation point, the vertex free energy
remains constant. That is, Fy(y;|T;)=Fy(y;|T)) for y;<y;.
Hence this provides a convenient starting point for searching
the optimal solutions. The drawn current can then be in-
creased in small discrete steps, and the optimal solution can
be found, for example, using an exhaustive search, by vary-
ing the descendent currents in small discrete steps. This ap-
proach is particularly convenient for c=3, where the search
is confined to a single parameter. For larger values of ¢, other
search techniques, such as conjugate gradient search, can be
used.

These recursive equations provide a discretized represen-
tation of the vertex free energy F\(y|T), from which various
properties of the system can be calculated.

Average energy. To compute the average energy, we ran-
domly draw c—1 nodes, compute the optimal current flowing
between them, and repeat the sampling to obtain the average.

The results of iteration for a Gaussian distribution p(A)
with variance 1 and average (A) were described in [12].
There we found that the convergence rate slows down when
(A) decreases towards 0. A cusp in the relaxation rate depen-
dence on {A) exists at (A)=~0.45, where the fraction of satu-
rated nodes is about 0.48, close to the percolation threshold
of 0.5 for ¢=3. Hence the cusp is probably related to the
appearance of a percolating cluster of negative resources,
which draws currents from increasingly extensive regions of
nodes with excess resources to satisfy the demand.

Dependence on the connectivity. We have presented in
[12] evidence that the currents scale as ¢!, so that after
rescaling, the average energy c*(¢) [see Fig. 1 (inset)], the
current distribution P(cy)/c, and the resource distribution
P(r) become principally dependent on the average capacity
(A), and only weakly dependent on the connectivity c. The
scaling property extends to the dynamics of the optimization
process. All results of increasing connectivity approach those
of the high connectivity limit derived in Sec. VI.

Here we further study how the high connectivity limit is
approached from increasing finite values of c. We define the
empirical scaling factor s by
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10

P(sy)/s

FIG. 1. (Color online) Results for N=1000 and ¢(y)=y?/2. (a)
The dependence of the empirical scaling factor s on the connectivity
¢ for different values of (A). Line: best fit. Inset: ¢*(¢) as a function
of (A). Symbols: ¢=3 (O), 4 (), 5 (¢), 10 (A), and high ¢ (line).
(b) The continuous component of the current distribution P(sy)/s
for (A)=0.02, 0.5, and 1. Lines: ¢=3 (solid), 4 (dotted), 5 (dashed),
10 (dot-dashed), and high ¢ (long dashed). Inset: P(y=0) as a func-
tion of (A), symbols: same as (a) inset.

_fim_ )
§= @) . (77)

s is expected to converge to c¢ in the high connectivity limit.
As shown in Fig. 1, the empirical scaling factor correspond-
ing to different values of (A) collapse on a linear curve with
slope 1. The best fit is s=1.02c—0.43. It is remarkable that
the network behavior already converges to scaling at low
values of c.

We make use of this empirical scaling factor to rescale the
current distribution. The current distribution consists of a
delta function component at y=0 [Fig. 1(b) (inset) [21]] and
a continuous component, whose breadth decreases with (A).
Excluding the delta function component, the continuous dis-
tribution after rescaling is shown in Fig. 1(b). The approach
to the high connectivity limit is even faster when compared
with that by setting the scaling factor to be ¢—1 [12].

Energy dependence on node capacity. We divide the
nodes into ten groups according to their node capacities.
Nodes in group 1 have their capacities among the top 10%,
those in group 2 the next highest 10%, and so on. For each
group, we then calculate the average energy per link for
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(a) c—oc=3
=8 c=4
&o—< c=b
A—~A c=6
o—ec=7
=—=u Cc=8
+—oc=9
&~—ac=10
——— highc

group

group

FIG. 2. (Color online) Results for N=1000 and ¢(y)=y>/2. (a)
The rescaled energy per link connected to the ten groups of nodes
with decreasing ranges of capacities at (A)=0.02 for different con-
nectivities indicated in the legend. (b) Same as (a) but at (A)=0.2.
Inset: Comparison of the curves for (A)=0.02, 0.1, 0.2, and 0.3 (top
to bottom). Lines: high ¢. Symbols: ¢=10 and (A)=0.02 (O), 0.1
(), 0.2 (©), and 0.3 (A).

those links connected to the nodes of that group. The general
trend can be seen in Figs. 2(a) and 2(b). Group 1 consists of
the richest nodes. Since they are the resource providers to the
rest of the network, their connected links have high average
energy. On the other hand, group 10 consists of the poorest
nodes. Since they are the resource consumers of the network,
their connected links also have high average energy. Com-
pared with group 1, their average energy is even higher due
to the enforcement of the resource constraints, Eq. (1). By
comparison, the groups in between consist of relay nodes
which typically receive resources from the richer ones and
provide resources to the poorer ones. The energies of their
connected links have intermediate averages. Figures 2(a) and
2(b) show that these different roles played by nodes of dif-
ferent capacities can lead to a significant difference in the
average energies of their connected links.

Furthermore, when one compares networks of different
connectivities, one finds that the rescaled energy curves be-
come only weakly dependent on the connectivity. The con-
vergence to the high connectivity limit is rather fast.

Figure 2(b) (inset) shows the rescaled energy curves in the
high connectivity limit for different (A). When (A) in-
creases, a plateau starts to develop among the groups of
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0.5

0.4 4

P(su)/s

FIG. 3. (Color online) Results for system size N=1000 and
¢(y)=y%/2. The chemical potential distribution P(sg)/s for {(A)
=0.02, 0.5, and 1. Lines: ¢=3 (solid), 4 (dotted), 5 (dashed), 10
(dot-dashed), and high ¢ (long dashed). Inset: P(w=0) as a function
of (A). Symbols: c=3 (O), 4 (), 5 (¢), 10 (A), and high ¢ (long
dashed).

richer nodes, indicating that the rich nodes become unsatur-
ated in their resource provision, so that the energy of their
connected links becomes independent of their excess re-
sources. They have A>1,(§) according to Eq. (48). Simula-
tion results for ¢c=10 presented in the same figure provide
support to this behavior. In fact, the development of this
plateau is already visible in the simulation results of finite
connectivities in Fig. 3, whose trend shows that the homog-
enization of energy among the links connected to the rich
nodes is increasingly effective when the connectivity in-
creases.

Chemical potential distribution. Both the message-
passing and price iteration algorithms allow us to study the
distribution P(u) of the chemical potentials u. P(u) consists
of a delta function at u=0 [Fig. 3 (inset)] and a continuous
component. The width of the continuous component in-
creases when (A) decreases. Note the concurrence of low
average resources and highly negative values of u, consistent
with the economic interpretation of u as the storage cost of a
node. The scaling property of the distribution is illustrated in
Fig. 3. For (A)=0.5 and 1, the distributions collapse well
even for relatively low values of ¢. For (A)=0.02, a consid-
erable dependence on ¢ remains after rescaling. However, the
approach to the high ¢ limit is visible.

VIII. GENERAL COST FUNCTIONS

The cost used so far was the, rather simple, quadratic cost.
In this section we examine the applicability of the message-
passing algorithm for more general costs. Two representative
costs will be studied.

(a) The anharmonic cost function is used to model the
effects of costs rising faster than quadratic,

ulyl?

3 (78)

2
¢(y)=y3+

(b) The frictional cost function is used to model the ef-
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fects of frictional forces in resource allocation, which add an
extra cost per unit current in a link irrespective of direction.
Hence it is also useful in networks with multiple classes of
traffic sharing the same links. The cost function takes the
form

2
Hy) = yg +oly|. (79)

Note that these cost functions represent two distinct cases.
The former has well-defined first and second derivatives for
all of its arguments. In the latter case, the frictional cost
function does not have a second derivative at y=0. There is
a kink in the cost function at the point of zero current, thus
increasing the preference for idle links, or equivalently the
reluctance to switch on a link. As will be shown, the conver-
gence of the message-passing algorithm is much more diffi-
cult and modifications are necessary.

A. Anharmonic cost

1. Price iteration

Introducing Lagrange multipliers for the capacity con-
straints, the function to be minimized is

2 3
L=E<%+M)+2Mi(z yij+Ai>’ (80)

) 3 i \jes,

where L; is the set of neighboring nodes of i. Optimizing
with respect to y;;=-y;;, one obtains the relation

1 1 1
yij=;|: Z+M|Mj—ﬂi|_5}5gn(ﬂj—ﬂi)- (81)

Using the capacity constraints, the chemical potential u; is
given by ,u,izmin[gi_l(O),O], where gi_l is the inverse of the
function

1 1 1
EEDY ;[\/Z+u|u,-—x|—E]sgnw,—xmi.

JjeL;
(82)

This provides a price iteration scheme. We solve this equa-
tion using the bisection method, noting that the function is
monotonic nonincreasing. This requires one to know the so-
lution bounds. Let w,, and w;, be the maximum and mini-
mum of the chemical potentials among the neighbors of node
i. Examining the cases of A;>0 and A;<0 separately, one
finds the range for the solution of x,

. [Ai( ”|Ai|> }
Momin + min| —| 1 + ,0
c c
. A, ulAj|
< XS minyj Yy +max| —(1+——/,01,0(.
c c
(83)

2. Message passing

Since the cost function has well-defined first and second
derivatives for all of its arguments, the message-passing al-
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FIG. 4. Results for N=1000, c=3, the anharmonic cost function with u=1, and 1000 samples. (a) () obtained by the price iteration
algorithm, utilizing Egs. (82) and (83), as a function of ¢ for (A)=0.1, 0.2, 0.3, 0.4, and 0.5 (top to bottom). (b) The corresponding current
distribution P(y). (c) The corresponding resource distribution P(r). (d) The corresponding chemical potential distribution P(u).

gorithm formulated in Sec. V is directly applicable:

Ajj = = i,

O(- Mij)

Bij<— P
> (Bjx+ &)

ke Ej\{i}

where

(84)

(85)

,U«ij=min{[ 2 [yjk_(Ajk+ d’;k)(Bjk"' d)}lk)_l]"'Aj_yij

ke £}

x[ S B+ ¢;;>-1]‘1,o},

ke Cj\{i}

and the backward message is given by

Aj+ ¢£k + M
By + &

For the anharmonic cost function,

Yik < Yijk —

Gh=vi+uyysgny; and =1+ 2uly;l|.

(86)

(87)

3. Simulation results

To study the behavior of the various algorithms in the
case of the anharmonic cost function, in comparison to the
quadratic cost, we carried out a simulation under similar con-
ditions to those of Sec. VII.

Figure 4(a) shows the average energy per link as a func-
tion of iteration steps of the price iteration algorithm for the
anharmonic cost function. Figures 4(b)—4(d) show the distri-
butions, P(y), P(r), and P(w) of the currents, resources, and
chemical potentials, respectively, at the corresponding values
of (A). The results obtained are very similar to those of the
quadratic cost function and show the same qualitative behav-
ior, as can be seen by comparing Figs. 4(a)-4(d) with Figs.
1(a) (inset), 2(a), 2(b), and 3(a), respectively.

In Figs. 5(a)-5(d) we compare the behavior of the price
iteration and message-passing algorithms by plotting the av-
erage energy per link, the fraction of idle links P(y=0), the
fraction of saturated nodes P(r=0), and the fraction of un-
saturated nodes P(u=0), respectively, as a function of (A)
for both algorithms at the anharmonic strengths =1 and 3.
Both methods converge to the same value throughout the
range examined and for the two u values examined.

To provide a more quantitative comparison of the cost
functions, we also plotted in Figs. 5(b)-5(d) P(y=0), P(r
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FIG. 5. Results for N=1000, ¢=3, the anharmonic cost function, and 1000 samples. (a) Average energy per link (). (b) The fraction of
idle links P(y=0). (c) The fraction of saturated nodes P(r=0). (d) The fraction of unsaturated nodes P(u=0). Symbols in (a)—(d): results
obtained by the price iteration algorithm for the quadratic cost function (z=0) (<J), and the anharmonic cost function with u=1 (O) and u=3
(©); results obtained by the message-passing algorithm are also shown for u=1 (CJ) and u=3 (A).

=0), and P(u=0), respectively, for the quadratic («=0) cost
function. Simulations have been carried out under the same
conditions (N=1000, ¢=3, and 1000 samples). It is remark-
able that there is little difference between the quadratic and
anharmonic cases. The different cost functions merely
change the continuous components of these distributions,
leaving the delta function components effectively un-
changed.

B. Frictional cost
1. Price iteration

Introducing Lagrange multipliers for the capacity con-
straints, the function to be minimized is

2

Yij

L=E(3‘+v|yi,~|>+2m(2 yij+Ai)' (88)

(if) i jeLl;

Optimizing with respect to y;;=-y;;, one obtains
Yij= [Mf —Mi—V Sgn(,U«j - ,U«i)]HMj - Mi| -v]. (89)

Using the capacity constraints, the chemical potential is

given by u,=min[g;'(0),0], where g;' is the inverse of the
function

i) = 2 [w;—x—v sgn(u; =)0 w; — x| —v] + A,.
JjeLl;

(90)

Since g;(x) is monotonic nonincreasing and piecewise linear,
we have a fast way to solve the equation by finding the
function at its 2¢ turning points, located at x=pu;xv. If
gi(Mmin_v)<0’ the solution is given by (:u’min_v)_gi(:u’min
—v)/c; if g tmin—v) =0, then among the turning points with
gi(x) =0, one finds the one with the minimum value of g;(x),
and the solution is given by x—g;(x)/g/ (x").

2. Message passing

Message-passing algorithms for the currents have not
been successful in this case, presumably due to the diver-
gence of the second derivative at y=0. This in turn requires
some form of regularization that causes the effects of friction
to be exhibited in the first, but not the second, derivative in
finite systems. This inconsistency prevents the algorithm
from converging.
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We present here an approach based on the chemical po-
tential representation. To formulate an appropriate version of
message passing for this case, we return to the minimization
of the energy of Sec. V, namely,

y
El= 2

ke LA}

1 , 1 )
Ajksjk+ EBijjk'i' E(yjk'i' Sjk) +v
91)
subject to the constraints

2 jx+ &)

kel -\{i}

introduced by employing the Lagrange multlphers i The
optimal solution is given by u;;= mm[glj (0),0], where g,j
the inverse of the function

2 (1+Bjk) [Bjky]k A —-X
kEE\{l}

gij(x) =

—vsgn(Bjyj—Aj—x)]

XO[|Bjyj—Ap—xl-vl+ A=y, (93)
The forward messages become
Aij T Mijs
O(- ,U«ij)
ij -
> (1+ Bj) OBy — Aj — wijl - vl

keﬁj\{i}
(94)

To complete the algorithm, we need information-
provision messages to determine the drawn current y;; at
which the messages should be computed. Analogous to the
case of quadratic cost functions, two methods are proposed.

In the method of backward information-provision mes-
sages, the backward messages are computed directly from
the optimization of Eq. (91) and sent from node j to the
descendent nodes, namely,

yir— (L+Bj) ' [Biyje— Aj — w
— v sgn(Bjyyjx— Ay — wij)]
XO[|Bjy i — Ay — myl —v]. (95)
This algorithm reduces the error at steady state to a level that
is still rather high. A careful examination of the solution

shows that the error is contributed by oscillatory solutions
between y;; and y;;. Hence a learning rate 7 is introduced:

yir — (L= )yj+ 91+ By) ' [Buyj— Ay — i
= v sgn(Bjyjx = Aji— )]
XO[|Bjwyj— Ay — pyl —v]. (96)
The case n=1 corresponds to the original algorithm.
In the method of forward information-provision mes-
sages, a node first receives the messages from the ancestor

immediately before it updates its messages. The working
point is obtained by minimizing the energy

PHYSICAL REVIEW E 76, 011115 (2007)

1
=A;g; +23 i€ij +A]z(_yij_8ij_yji)

; Bji(=yi;— yji)2+%(yij+8ij)2+v|yij+8” )
(97)
with the optimal solution
yij e (1+ B+ Bji)_l[Bijyij —A;—B;yjitA
—v sgn(B;y;;—A;; = Bjiyji+Aj)]
><.(|B,jyu A= By + j,-| -v). (98)

For further improvement, a learning rate is introduced,
namely,

yij— (L= m)y;+ (1 + B+ B;) ' [Byyi; — Aij = Bjiyji + Aji
—vsgn(B;y;—A;—Bjy;i+Aj)]

XO(|B;jy;;—A;j— Bjyji+ Azl —v) (99)

3. Simulation results

To study the behavior of both price iteration and message-
passing algorithms in the case of the frictional cost function,
we carried out simulations under similar conditions to those
of Sec. VIL. Figure 6(a) shows the average energy per link as
a function of iteration steps of the price iteration algorithm.
Figures 6(b)-6(d) show the current, resource, and chemical
potential distributions, P(y), P(r), and P(u), respectively, for
the various (A) values.

The results shown in Figs. 6(a)-6(c) exhibit a similar
qualitative behavior to those of the quadratic and anharmonic
cost functions. However, there is a substantial difference in
the chemical potential distribution, shown in Fig. 6(d) as a
pseudogap develops in the range v < <0, as well as a kink
at u=—2v. From Eq. (89) one notices that a link becomes
idle when the potential difference at its vertices is less than
v, accounting for the existence of the pseudogap.

A quantitative comparison between the results obtained
by price iteration (90) and message-passing [Egs. (94) and
(95)] algorithms (7=1, no learning rate) is presented in Fig.
7. A comparison of the average energy per link as a function
of (A), the fraction of idle links P(y=0), and the fraction of
unsaturated nodes P(u=0) is shown in Figs. 7(a)-7(d), re-
spectively, showing good agreement between the result ob-
tained using both algorithms. Results obtained by both price
iteration and message-passing algorithms for a friction (v
=1) cost are also contrasted with results obtained for the
quadratic (v=0) cost in Figs. 7(b) and 7(d).

As shown in Fig. 7, the price iteration and the original
message-passing algorithms yield results agreeing in the av-
erage energy (a), the fraction of idle links (b), and the frac-
tion of unsaturated nodes (d). Compared with the quadratic
cost function, the fraction of idle links is considerably in-
creased after introducing the friction, as shown in Fig. 7(b).
However, as shown in Fig. 7(c), the message-passing algo-
rithm gives values much lower than those of price iteration,
and is inconsistent with the results in Fig. 7(d).
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FIG. 6. Results for N=1000, c¢=3, the frictional cost function with v=1, and 1000 samples. (a) (¢) obtained by the price iteration
algorithm as a function of ¢ for (A)=0.1, 0.2, 0.3, 0.4, and 0.5 (top to bottom). (b) The corresponding current distribution P(y). (c) The
corresponding resource distribution P(r). (d) The corresponding chemical potential distribution P(u).

The resource distribution in Fig. 8(a) explains the discrep-
ancy. Compared with the results in Fig. 6(c), the sharp peak
at r=0 is broadened to finite values of r. This shows that the
original message-passing algorithm is not precise in comput-
ing the resources. Furthermore, the chemical potential distri-
bution in Fig. 8(b) exhibits rough features in the pseudogap,
and the jumps near the edge of the pseudogap are less sharp
than those in Fig. 6(d).

These unsatisfactory performances of the message-
passing algorithm can be traced to its nonconvergence. In
message passing, convergence is monitored by the root-
mean-square average of ([(y;;+y;;)/2]*"%, which is expected
to approach 0. As shown in Fig. 8(c) for the original algo-
rithm (%=1), the convergence parameter reaches 0.04 at ¢
=500, compared with the value of 0.0003 for the price itera-
tion algorithm.

To improve convergence, we introduce a learning rate ac-
cording to Egs. (96) and (99). As shown in Figs. 8(c) and
8(d), convergence improves for decreasing 7, but is also
slowed down. Comparing the two information-provision
methods, the one using forward information-provision mes-
sages converges faster.

As shown in Fig. 9(a), better convergence is obtained by
the forward information-provision messages in 500 steps.

Figure 9(b) summarizes the improvement in the fraction of
saturated nodes on introducing the learning rate for 500
steps; results obtained using the price iteration algorithm are
provided for comparison. Obviously, further improvement
can be made by increasing the number of time steps, and
hence depends on the amount of computational resources
one wishes to commit.

IX. CONCLUSION

The paper presents a study of inference and optimization
tasks of real value edges on sparse graphs under given con-
straints and cost measure. A generic framework comprising
of sparsely connected nodes, representing constraints, and
edges representing current variables connecting them, is used
as the basic framework for the inference and optimization
tasks. Inference of real values attributed to the graph edges
has very rarely been studied before within and outside the
statistical physics community. Although both theoretical
analysis and algorithmic solutions can be obtained for any
connectivity profile, we restricted this study to the case of
fixed connectivity, c.

The framework is analyzed using both the replica method
and Bethe approximation to obtain a set of recursive equa-
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FIG. 7. Results for N=1000, c=3, the frictional cost function with v=1, and 1000 samples. (a) Average energy (). (b) The fraction of
idle links P(y=0). (c) The fraction of unsaturated nodes P(u=0). (d) The fraction of saturated nodes P(r=0). Symbols in (a)—(d): results
obtained for the frictional cost function by the price iteration algorithm (O) and the message-passing algorithm (CJ); results obtained for the

quadratic cost function (v=0) ().

tions to be solved numerically. The solutions provide nu-
merical results for the free energy, average energy, and the
distribution of currents, resources, and chemical potentials
for the various cases. The recursive equations also enabled us
to obtain scaling rules for various quantities of interest as a
function of the node connectivity. In addition, we have de-
vised message-passing and price iteration algorithms for
solving the optimization problem. The message-passing al-
gorithm is based on passing first and second derivatives of
the vertex free energy, representing the local contribution to
the system’s free energy, thus saving the need to pass the full
free energy functions as messages. Despite the simplicity of
the two-parameter messages, they yield exact solutions in the
limit of sparse connectivity as long as they converge.

Most numerical studies have been carried out for the case
of quadratic cost that corresponds to the resource allocation
problem which initiated this study. In this case we fixed the
nodes’ capacities, representing biases in the local constraints,
to quenched variables drawn from some Gaussian distribu-
tion of given mean (A) and unit variance. Numerical results
for various parameters values, ¢ and (A), show excellent
agreement between the analytical and algorithmic ap-
proaches both for finite and asymptotic connectivity values.
Moreover, they expose an interesting percolation transition

of the clusters of nodes with negative resources when (A)
varies, giving rise to a slowing down of the convergence of
the saddle point equations below a certain value of (A).

To study the efficacy of our approach to other cost mea-
sures we have examined two different costs that include an-
harmonic and friction terms. We have applied two different
algorithms in these cases based on the price iteration and
message passing. Price iterations involve solving a nonlinear
equation of the chemical potential at each step numerically.
On the other hand, message passing involves updating the
messages based on the working points estimated from the
information-provision messages. While the obtained solu-
tions are qualitatively similar to that of the quadratic cost,
there are also substantial algorithmic and conceptual differ-
ences, especially in the case of friction cost. For the optimi-
zation task studied in this paper, price iteration is simpler in
implementation and converges better when compared with
message passing. However, for future extensions to inference
problems at finite temperatures, we expect the message-
passing approach to be more appropriate. It is also useful to
adopt an adaptive learning rate as a function of time to op-
timize the performance [24].

We believe this research opens a rich area for further in-
vestigations with many potential applications, especially
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FIG. 8. Results for N=1000, c¢=3, the frictional cost function with v=1, and 1000 samples. (a) The chemical potential distribution P(u)
for (A)=0.1, 0.2, 0.3, 0.4, and 0.5 (top to bottom). (b) The corresponding resource distribution P(r). (c) and (d) The convergence parameter
[+ yji)/2]2>”2 of the message-passing algorithm as a function of iteration steps and for various # values, using backward and forward

information-provision messages in (c) and (d), respectively.

when additional restrictions are imposed and other costs con-
sidered. More specifically, one may consider bandwidth lim-
ited links [23] and other nonlinear costs which are of interest
in realistic networks. We expect that many nonlinear costs
may exhibit replica symmetry-breaking effects, and it would
be interesting to consider how the analyses and algorithms
should be modified to cope with these effects.
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APPENDIX A: REPLICA APPROACH
TO NETWORK OPTIMIZATION

To calculate the averaged replicated partition function (5),
we employ an integral representation of the step function to
obtain

@)= S 11§ Cllarn

(+1
N.AU:O,I i 2

><H fdA,p(A)H fdvf dx“fd)‘a

exp[— SRS A (- 0f)
ia j
“BY S A - v?)].

(i) a

% en\, N-Be(v)?2

(A1)

Collecting terms containing .A;; and summing over them, one
obtains

dz;

(z'y= —Hff; m

xnfdvj d)\f

x[1 [1 +2:2; exp(E (l)\“—l)\“)(v -V )

(i)

J dA;ip(A;)

1)\ NT-Be(vH?2
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and 1000 samples. Symbols: information provision using backward
messages (O) and forward messages ((J). (b) The corresponding
fraction of saturated nodes. Symbols: same as in (a), and the price
iteration algorithm (dashed line).

(A2)

~63 0] - ))]

This includes a mixed term of i and j indices. An additional
expansion is required to disentangle the two indices. The
product over (ij) can be written as an exponential function
whose argument is

22(‘

ij m=1

X exp(% im):j’?‘va> > [—— (

TS f [e3 a

Z(X
<_ i) B
dy

z'7) exp(E zm):lavla)

lm)\ v)'a

(— tm)\a &) (Vi) e
Sg! t,!

@

a* =V
Y J

(A3)
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which gives rise to the mean-field parameters

1 ~ ~ )
o= ?\72 z" exp(z im)\?v?)l_[ (= imN\&) a(v%) e
\i& i a

[e3

(Ad)

and the conjugate parameters Q:"s The replicated and aver-
aged partition function (Z") becomes

nl Qr‘S
2mleN exP(

@= I [

xH jg — f dA;p(A;)
7TlZ

XH(fdvf d)\“f NN B()Z/z)

Xexp \rcNE QrSEZ exp(Ezm)\“ “)

N2 QT?Qrm€>

r,s,m

r.s,m i

m—l m
XH (= im\®) (1) + \CNE O Qs
r.s,m 2m H Iy 'S !

X? Z exp(za: im)\“ “)H (V)"

~ d \’«
X (— im\§ - —) e MBI
J dy

(AS)

y=v¢
J

The integration over z; is dominated by the term m=1 in the
cth order expansion of the exponential term that leads to Eq.

(7). Both Q.4 and Qr’s are then given by the saddle point
equations

0r= D0 and Oy 2
=— an = —
"D "D

where

lefdAp(A)];[ fdvaﬁdxaj%

Xexplz (i):a()\a+ cv,) — %E(Va)2> }X”‘l

a

XIT (= ing) a(vy) e,
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1 ” dn
Ny=> f dAp(M)] T f dv, f d\, 2—“
a -A ™

Xexp{z <i)§a()\a +cvy) — %E(Va)zﬂx"‘l

o

W e L (_ix _i)sae—ﬁm)

Tyl s,

a

D:jdAp(A)H fdyar dxafdﬂ‘
a -A 2w

Xexp[E (ixa(xa+ cv,) - %E(Va)zﬂxc‘, (A6)

a

y=v,

where X is given by Eq. (8). By virtue of the saddle point
equations (A6), one can show that

A 1 —la
Or=3 S T

tu o Talta!(sg—1,)'u,!

ta+l/la/
v (i) -B0)
dy

Qs—t,r+u' (A7)

y=0

Exploiting the even nature of ¢(y) and relation (A7) [20], the
expressions for X and Q, ¢ reduce to

.d )\
x=S s ] (p)e <_,-)\a__> o-BH)
r,s Hra!sa! a dy

Y=Vqy

(A8)

To better understand the symmetry properties of the order
parameters, we consider the generating function Pg(z) and its
inversion in Eq. (9). Substituting Eq. (A8) into Eq. (9), we
reproduce Eq. (10), with D, being

” dx
Dp= f dAp(M)]] [ f dv, f d\, | 7=
a -A 277

Xexp(fmw cv,) - Bf(va)z)}z 17,

s; k=1

(A9)

T (=i —d)* o
a) a dy

ka Sk+ y=v,

Once we have represented the order parameters Q,. ; using
the generating function Pg(z), we can make explicit assump-
tions about their symmetry properties. In particular, in the
replica symmetric ansatz, we consider functions of the form
Eq. (11).

Notice that the replicas in Eq. (11) are coupled through
their common dependence on the disordered distribution of
A. This is different from the SK model, in which the depen-
dence on the disorder is integrated out, and the interaction
between the replicas is explicit. Using the ansatz (11), the
recursion relation for Py(z) can be replaced by a recursion
relation for the function R in Eq. (12), where
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D= fde {dekR(v,vdi)}
k=1

X@(E v —Ccv+ Av>
k=1

n\ l/n

Xexp[— %61/2— ,6’% d(v— Vk)]
= A
(A10)

Ay is the capacity of the vertex fed by c trees T, ..., T,.
Letting y=v—z, we consider solutions of Eq. (12) in the
form

R(z,v

T) = W()Z,(y|T). (A11)

Separating the dependence on the current potentials from
that on the currents, the extra Gaussian distribution of v in
Eq. (A10) prevents the integration of v from diverging. In-
deed, in the n— 0 limit and as e— 0, the function W(z) be-
comes independent of z and can be represented as

4
W(V)=\/2'8—;.

The recursion relation involving the currents becomes decou-
pled to give

(A12)

c-1
z,6m) =11 {f dYkZV(Yk|Tk):|

k=1

c-1 c-1
X(E Y=Y+ AV(T))GXP{— B ¢(yk):|
k=1

k=1

Xexp) -\ In H[fdykZV(Yk|Tk):|

k=1

><<2 Vi + Av)exp[— B ¢(yk)]
k=1

k=1 A

(A13)

Let Fy(y|T) be the vertex free energy when a current y is
drawn from the vertex of a tree T, given by Fy(y|T)=
~TIn Zy(y|T). Then the recursion relation of the free energy
is given by Eq. (13), which in the zero-temperature limit
becomes Eq. (14).

To calculate the free energy in the replica approach, one
returns to Eq. (7). In the second term of the exponential
argument therein, one eliminates Qr,s by Eq. (A7), expresses
O, in terms of Py(z) by Eq. (9) and, in turn, R(z,,v|A) by
Eq. (11). In the third term, one expresses X in terms of Q¢
by Eq. (A8) and follows similar steps. The result is
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c c
<Zn> = eXp(NE - 5<{f dVldeR(Vz, V1|T1)

XR(vy,v5|Ty)exp[— Bd(v, — Vz)]} >A

+In fde |:fdwR(V, Vk|Tk):|
k=1

X@(E Vk—CV+A)

k=1

a2} )
k=1 A

(A14)

Using the recursion relation Eq. (12), one can show that the
sum of the first two terms in the exponential argument van-
ishes. In the limit n— 0 one obtains the free energy

(BFy=-N\ In jde [R(V,V,JT,J]@(E Vk—CV+A)
k=1 k=1

XeXP[—BE (v vk)—%evz] (A15)
k=1

A
Using the vertex free energy representation, one then
straightforwardly rewrites Eq. (A15) as Eq. (15) (up to a
constant).

APPENDIX B: MESSAGES IN THE BAYESIAN
APPROXIMATION

To show that the vertex free energies are directly related
to passed messages in the Bayesian approximation, one re-
sorts to formulating the problem on a bipartite graph and
deriving the closed set of equations that relate to the mes-
sages passed from variables to interaction nodes and vice
versa.

The representation of the problem as a bipartite graph is
shown in Fig. 10, with the current variables y on the left and
the interaction variables Z on the right. Using conventional
notations [3] one can easily derive the closed set of equa-
tions:

O(y;) = P(y;)R(y;;) (B1)

where Q(y;;) is the posterior of y;; given Z;, P(y;) is the prior
of y;;, and R(y;;) is the likelihood of Z; given y;;. As shown in
Fig. 10, the message from Z; to y;; is Q(y;;), and the message
from y;; to Z; is R(y;;). Thus

R(yij)=f I1 dy P(Zily;{yuck € £;\i}) I1 O(vjn)-

ke L)\j keﬁj\i
(B2)

Using
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FIG. 10. (Color online) A bipartite graph representation of the
resource allocation problem with the current variables y on the left
and the interaction variables Z on the right.

P(y;) = exp(— §¢(yij)> > (B3)

P(Zj|yij,{yjk:k € ‘Cj\i}) o ®(Aj—)’ij+ 2 yjk),
ke[lj\i

(B4)

and substituting the expression for Q (B1) into the P equa-
tion (B2) one obtains

Ry T1 (J dyjk)<Aj_ytli+ > yjk)
kE,Cj\i keﬂj\i

o N e

ke L\

(B5)

Let Fv(y,-j|Zj):—T1n R(y;;). Then on taking the logarithm of
both sides of Eq. (B5) and normalizing, one retrieves Eq.

(15) if F v(v;1Z)) is identified with the vertex free energy
F V(yij | T j)7

c—1 c—1
Fv(yij|Zj) =T\ ] (f dyjk)®(2 Vi = Yij+ A_,')
k=1

k=1
c—-1
Xexp| — B2 (FylZe) + d(yip) | [ = Fav-
k=1
(B6)
This means that the vertex free energy F V(y,»j|T ;) is equiva-

lent to —T times the logarithm of the message R(y;;) from y;;
to Z;.

011115-21



K. Y. MICHAEL WONG AND DAVID SAAD

[1] H. Nishimori, Statistical Physics of Spin Glasses and Informa-
tion Processing (Oxford University Press, Oxford, UK, 2001).

[2] M. Opper and D. Saad, Advanced Mean Field Methods (MIT,
Cambridge, MA, 2001).

[3] D. J. C. Mackay, Information Theory, Inference and Learning
Algorithms (Cambridge University Press, Cambridge, UK,
2003).

[4]J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans. Inf.
Theory 51, 2282 (2005).

[5] M. Mézard, e-print arXiv:cond-mat/0401237.

[6] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 (2002).

[7] Y. Kabashima and D. Saad, J. Phys. A 37, R1 (2004).

[8] L. Saul and M. Jordan, Neural Comput. 6, 1174 (1994).

[9] S. L. Lauritzen, J. Am. Stat. Assoc. 87, 1098 (1992).

[10] N. S. Skantzos, 1. P. Castillo, and J. P. L. Hatchett, Phys. Rev.
E 72, 066127 (2005).

[11] K. Y. M. Wong, D. Saad, and Z. Gao, Advances in Neural
Information Processing Systems, edited by Y. Weiss, B.
Scholkopf, and J. Platt (MIT, Cambridge, MA, 2005), Vol. 18,
p. 1529.

[12] K. Y. Michael Wong and D. Saad, Phys. Rev. E 74, 010104(R)
(2006).

[13] D. Bertsekas, Linear Network Optimization (MIT, Cambridge,
MA, 1991).

[14] L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach (Academic, San Diego, CA, 2000).

PHYSICAL REVIEW E 76, 011115 (2007)

[15] Y. C. Ho, L. Servi, and R. Suri, Large Scale Syst. 1, 51 (1980).

[16] S. Shenker, D. Clark, D. Estrin, and S. Herzog, Comput. Com-
mun. Rev. 26, 19 (1996).

[17] R. L. Rardin, Optimization in Operations Research (Prentice
Hall, Englewood Cliffs, NJ, 1998).

[18] K. Y. M. Wong and D. Sherrington, J. Phys. A 20, L793
(1987).

[19] This term is marginalized over all inputs to the current vertex,
leaving the difference in current potentials y as its sole argu-
ment, hence the terminology used.

[20] If ¢(y) is not an even function of y, analyses along the lines of
Appendix A show that ¢(y;) in the Boltzmann factors of Eq.
(13) have to be replaced by ¢(ayy;), where o,==1 should be
quench averaged.

[21] Compared with the results in Fig. 2(a) (inset) of [12], here we
have an even faster convergence to the high connectivity limit,
after we have separated the contribution of the continuous
component at y=0.

[22] F. P. Kelly, Eur. Trans Telecommun. Relat. Technol. 8, 33
(1997).

[23] K. Y. M. Wong, C. H. Yeung, and D. Saad, Neural Information
Processing, edited by 1. King et al., Lecture Notes in Com-
puter Science Vol. 4233, Part II (Springer-Verlag, Berlin,
2006), p. 754.

[24] On-line Learning in Neural Networks, edited by D. Saad
(Cambridge University Press, Cambridge, UK, 1998).

011115-22



