The stress-strain relations and the yield behavior of model glass (a 80:20
binary Lennard-Jones mixture) is studied by means of MD simulations. First, a
thorough analysis of the static yield stress is presented via simulations under
imposed stress. Furthermore, using steady shear simulations, the effect of
physical aging, shear rate and temperature on the stress-strain relation is
investigated. In particular, we find that the stress at the yield point (the
``peak''-value of the stress-strain curve) exhibits a logarithmic dependence
both on the imposed shear rate and on the ``age'' of the system in qualitative
agreement with experiments on amorphous polymers and on metallic glasses. In
addition to the very observation of the yield stress which is an important
feature seen in experiments on complex systems like pastes, dense colloidal
suspensions and foams, further links between our model and soft glassy
materials are found. An example are hysteresis loops in the system response to
a varying imposed stress. Finally, we measure the static yield stress for our
model and study its dependence on temperature. We find that for temperatures
far below the mode coupling critical temperature of the model (Tc=0.435),
\sigmay decreases slowly upon heating followed by a stronger decrease as
\Tc is approached. We discuss the reliability of results on the static yield
stress and give a criterion for its validity in terms of the time scales
relevant to the problem.Comment: 14 pages, 18 figure