
Equilibration through loal information exhange in networksK. Y. Mihael Wong1 and David Saad21Department of Physis, The Hong Kong University of Siene and Tehnology, Clear Water Bay, Hong Kong, China. and2The Neural Computing Researh Group, Aston University, Birmingham B4 7ET, UK.(Dated: November 28, 2005)We study the equilibrium states of energy funtions involving a large set of real variables, de�nedon the links of sparsely onneted networks, and interating at the network nodes, using the avityor replia methods. When applied to the representative problem of network resoure alloation,an eÆient distributed algorithm is devised, with simulations showing full agreement with theory.Saling properties with the network onnetivity and the resoure availability are found.PACS numbers: 02.50.-r, 02.70.-, 89.20.-aMany theoretially hallenging and pratially impor-tant problems involve interating variables onneted bynetwork strutures [1℄. Statistial mehanis of disor-dered systems makes ontributions towards the under-standing of suh systems at two levels. Marosopially,it desribes the typial behaviour of the networks, usingestablished tehniques suh as the replia method. Mi-rosopially, it analyses the relation between the vari-ables, using tehniques suh as the avity method, thatgive rise to eÆient omputational algorithms, suh asthose reminisent of the belief propagation algorithm ininformation proessing [2, 3℄.Most studies so far have foused on ases of disretevariables. On the other hand, networks of ontinuousvariables were muh less explored. There have been re-ent attempts for message passing of ontinuous variablesloalized on nodes [4℄, but many typial problems, suhas network resoure alloation, involve urrent variablesde�ned on links between nodes.For optimization on networks, the traditional approahis to adopt global optimization tehniques, suh as lin-ear or quadarti programming [5℄. In ontrast, message-passing approahes have the potential to solve global op-timization problems via loal updates, thereby reduingthe omputational omplexity. An even more importantadvantge, relevant to pratial implementation, is its dis-tributive nature. Sine it does not require a global op-timizer, it is partiularly suitable for distributive ontrolin large or evolving networks.In this paper we study a system with real variablesthat an be mapped onto a sparse graph and suggest aneÆient message passing approximation method. Afterformulating the problem at a general temperature, wefous on a prototype for optimization, termed resourealloation and well known in the areas of omputer si-ene and operations management [6, 7℄.We onsider a sparse network with N nodes, labelledi = 1; : : : ; N . Eah node i is randomly onneted to other nodes. The onnetivity matrix is given byAij = 1; 0 for onneted and unonneted node pairsrespetively. A link variable yij is de�ned on eah on-neted link from j to i. We onsider an energy funtion(ost) E = P(ij) Aij�(yij) +Pi  (xi; fyij jAij = 1g),where xi is a quenhed variable de�ned on node i. In

the ontext of probabilisti inferene, yij may representthe oupling between observables in nodes j and i, �(yij)may orrespond to the logarithm of the prior distributionof yij , and  (xi; fyij jAij = 1g) the logarithm of the like-lihood of the observables xi. In the ontext of resourealloation, yij � �yji may represent the urrent fromnode j to i, �(yij) may orrespond to the transporta-tion ost, and  (xi; fyij jAij = 1g) the performane ostof the alloation task on node i, dependent on the nodeapaity xi.We are interested in the ase of intensive onnetivity � O(1) � N . Sine the probability of �nding a loopof �nite length on the nework is low, the avity methodwell desribes the loal environment of a node. A nodeis onneted to  branhes in a tree struture, and theorrelations among the branhes of the tree are negleted.In eah branh, nodes are arranged in generations. Anode is onneted to an anestor node of the previousgeneration, and another  � 1 desendent nodes of thenext generation. Considering node i as the anestor ofnode j, the desendents of node j form a tree strutureT with  � 1 branhes, labelled by k 6= i for Ajk = 1.At a temperature T � ��1, the free energy F (yij jT) anbe expressed in terms of the free energies F (yjkjTk) ofits desendents. The free energy an be onsidered as thesum of two parts, F (yjT) = NTFav+FV (yjT), whereNTis the number of nodes in the tree T, Fav is the averagefree energy per node, and FV (yjT) is referred to as thevertex free energy. This leads to the reursion relationFV (yij jT) = �T ln(Yk 6=i�Z dyjk� exp��� (xj ; fyjkg)��Xk 6=i (FV (yjk jTk) + �(yjk))�)�����Ajk=1 � Fav; (1)Fav = �T*ln(Yk �Z dyjk� exp��� (xj ; fyjkg)��Xk (FV (yjkjTk) + �(yjk))�)�����Ajk=1+x; (2)where Tk is the tree terminated at node k, and h: : : ix
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2represents the average over the distribution of x.For more onrete disussions, we fous on the resourealloation problem, whih is appliable to typial situ-ations where a large number of nodes are required tobalane loads/resoures, suh as reduing internet traÆongestion and streamlining network ows of ommodi-ties [8℄. In omputer siene, many pratial solutionsare usually heuristi and fous on pratial aspets (e.g.,ommuniation protools). Here we study a more generiversion of the problem. In the ontext of omputer net-works, it is represented by nodes of some omputationalpower that should arry out tasks. Both omputationalpowers and tasks will be hosen at random from somearbitrary distribution. The nodes are loated on a ran-domly hosen sparse network of some onnetivity. Thegoal is to alloate tasks on the network suh that de-mands will be satis�ed while the migration of (sub-)tasksis minimised.We fous here on the satis�able ase where the to-tal omputing power is greater than the demand, andwhere the number of nodes involved is very large. Thisis of interest to physiists due to the appliability of thetehniques we introdue to the analysis of sparsely on-neted systems with real variables. Eah node on thenetwork has a apaity (omputational apability minusalloated tasks) xi randomly drawn from a distribution�(xi). (The algorithms presented later an easily aom-modate any onnetivity pro�le within the same frame-work.) With the aim to satisfy the apaity onstraints,we have  (xi; fyij jAij = 1g) = ln[�(Pj Aijyij+xi)+ �℄,where � ! 0. The problem redues to the load bal-aning task of minimizing the energy funtion (ost)E =P(ij) Aij�(yij), subjet to the apaity onstraints.When �(y) is a general even funtion of the urrent y,we may also derive Eq. (1) using the replia method. We�rst introdue the hemial potentials �i of nodes i, andapproximate the urrent yij as driven by the potentialdi�erenes between nodes yij = �j � �i. Sine sparsenetworks are loally tree-like, the probability of �ndingshort loops is vanishing in large networks, and the ap-proximation works well.Considering the optimization problem in the spae ofhemial potentials, we alulate the repliated partitionfuntion hZniA;x averaged over the onnetivity matrixand the apaity distribution, and take the limit n! 0.Assuming replia symmetry, the saddle point equationsof the replia method yields a reursion relation for a two-omponent funtion R dependent on the tree strutureT, given byR(z; �jT) = 1D �1Yk=1 �Z d�kR(�; �kjTk)�� �1Xk=1 �k��+z+xV (T)! exp ���2 �2 � � �1Xk=1 �(�� �k)!;(3)where D is a onstant, Tk represents the tree terminatedat the kth desendent, and xV (T) is the apaity of the

vertex of the tree T. The term ���2=2, with � ! 0,is introdued to break the translational symmetry of thehemial potentials, sine the energy funtion is invariantunder the addition of an arbitrary global onstant to allhemial potentials.Eq. (3) expresses R(z; �jT) in terms of � 1 fun-tions R(�; �kjTk) (k = 1; ::;  � 1), a harateristi ofthe tree struture. Furthermore, exept for the fatorexp(����2=2), R is a funtion of y � � � z, whih isinterpreted as the urrent drawn from a node with hem-ial potential � by its anestor with hemial potential z.One an then express the funtion R as the produt ofa vertex partition funtion ZV and a normalization fa-tor W , that is, R(z; �jT) =W (�)ZV (yjT). In the limitn!0, the dependene on � and y deouples, enabling oneto derive a reursion relation for the vertex free energyFV (yjT)��T lnZV (yjT) and arrive at Eq. (3).The urrent distribution and the average free en-ergy per link an be derived by integrating the ur-rent y0 in a link from one vertex to another, fed bythe trees T1 and T2, respetively; the obtained expres-sions are P (y) = hÆ(y � y0)i? and hEi = h�(y0)i? whereh�i? = 
R dy0 exp [��E(y0)℄ (�)= R dy0 exp [��E(y0)℄�x ;and E(y0) = FV (y0jT1) + FV (�y0jT2) + �(y0).The solution of Eq. (1) an be obtained numeriallyfor optimization (T = 0). Sine the vertex free energy ofa node depends on its own apaity and the disorderedon�guration of its desendents, we generate 1000 nodesat eah iteration of Eq. (1), with apaities randomlydrawn from the distribution �(x), and eah being fed by� 1 nodes randomly drawn from the previous iteration.We have disretized the vertex free energy funtion intoa vetor, whose ith omponent is the value FV (yijT). Tospeed up the optimization searh at eah node, we �rst�nd the vertex saturation urrent drawn from a node suhthat: (a) the apaity of the node is just used up; (b) theurrent drawn by eah of its desendant nodes is justenough to saturate its own apaity onstraint. At thissaturation point, we an separately optimize the urrentdrawn by eah desendant node, providing a onvenientstarting point for searhing the optimal solutions.Figure 1(a) shows the results of iteration for a Gaus-sian apaity distribution �(x) with variane 1 and aver-age hxi. Eah iteration orresponds to adding one extrageneration to the tree struture, suh that the iterativeproess orresponds to approximating the network by aninreasingly extensive tree. We observe that after an ini-tial rise with iteration steps, the average energies on-verge to steady-state values, at a rate whih inreaseswith the average apaity.To study the onvergene rate of the iterations, we�t the average energy at iteration step t using hE(t)�E(1)i � exp(�t) in the asymptoti regime. As shownin the inset of Fig. 1(a), the relaxation rate  inreaseswith the average apaity. A usp appears at the aver-age apaity of about 0.45, below whih onvergene isslow due to a plateau that develops in the average en-ergy urve before the �nal stage. The slowdown is prob-
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FIG. 1: Results for N = 1000 and �(y) = y2=2. (a) hEiobtained by iterating Eq. (1) as a funtion of t for hxi=0.1,0.2, 0.4, 0.6, 0.8 (top to bottom) and =3. Dashed line: Theasymptoti hEi for hxi= 0:1. Inset:  as a funtion of hxi.(b) K2hEi as a funtion of hxi for  = 3 (), 4 (�), 5 (�),large K (line). Inset: K2hEi as a funtion of time for randomsequential update of Eqs. (4-6). Symbols: same as (a).ably due to the appearane of inreasingly large lustersof nodes with negative apaities, whih draw urrentsfrom inreasingly extensive regions of nodes with exessapaities to satisfy the demand.The loal nature of the reursion relation (1) pointsto the possibility that the network optimization an besolved by message passing approahes, However, in on-trast to other message passing algorithms whih pass on-ditional probability estimates of disrete values to theneighboring nodes, the messages in the present ontextare more omplex, sine they are funtions FV (yjT) ofthe urrent y. We simplify the message to 2 parameters,namely, the �rst and seond derivatives of the vertex freeenergies. For the quadrati load balaning task, it anbe shown that a self-onsistent solution of the reursionrelation Eq. (1) onsists of vertex free energies whih arepieewise quadrati with ontinuous slopes. This makesthe 2-parameter message a very preise approximation.Let (Aij ; Bij) � (�FV (yij jTj)=�yij ; �2FV (yij jTj)=�y2ij)be the message passed from node j to i. Using Eq. (1),the reursion relations lead to the forward message(Aij ; Bij) from node j to i, followed by the bakward
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FIG. 2: Results for N = 1000 and �(y) = y2=2. (a) Theurrent distribution P (Ky)=K for hxi = 0:02; 0:5; 1, and  = 3(solid lines), 4 (dotted lines), 5 (dot-dashed lines), large K(long dashed lines). Inset: P (y= 0) as a funtion of hxi for = 3 (), 4 (�), 5 (�), large K (line). (b) The resouredistribution P (r) for hxi = 0:02; 0:1; 0:5, large K. Symbols:same as (a). Inset: P (r > 0) as a funtion of hxi. Symbols:same as (a) inset.message yjk from node j to k,Aij ��ij ; Bij �(��ij + �)Pk 6=iAjk(�00jk +Bjk)�1 ; (4)yjk yjk � �0jk +Ajk + �ij�00jk +Bjk ; (5)�ij=min("Xk 6=iAjk [yjk � (�0jk +Ajk)(�00jk +Bjk)�1℄+�j � yij#"Xk 6=i Ajk(�00jk +Bjk)�1#�1; 0); (6)with �0jk and �00jk representing the �rst and seond deriva-tives of �(y) at y = yjk respetively.We note that Eqs. (4-6) di�er from onventionalmessage-passing algorithms in that bakward messagesof the urrents are present. As a onsequene of repre-senting the messages by the �rst and seond derivatives,



4the bakward messages serve to inform the desendentnodes the partiular arguments they should use in al-ulating the derivatives for sending the next messages.Furthermore, the riterion that yij = �yji provides ahek for the onvergene of the algorithm.Another usage of the bakward messages is in monitor-ing the optimal ost funtion during simulations. Thissaves the extra step of alulating the energy assoiatedwith a link in the onventional Bethe approah.For the quadrati load balaning task onsidered here,an independent exat optimization is available for om-parison. The hemial potentials turn out to be the La-grange multipliers of the apaity onstraints, and therelation between the urrents and the hemial poten-tials turn out to be exat. The K�uhn-Tuker onditionsfor the optimal solution yield�i=min241 0�Xj Aij�j +�i1A ; 035 : (7)Like in the message-passing algorithm, this ondition alsoprovides a loal iterative solution to the optimizationproblem. Simulations show that it yields exellent agree-ment with Eqs. (1) and (4-6).To study the dependene on the onnetivity, we �rstonsider the limit of large K �  � 1. In this limit,Eq. (4) onverges to the steady-state results of Aij =max[K�1Pk 6=iAjkAjk � xj); 0℄ and Bij � K�1. ThenPk 6=iAjkAjk beomes self-averaging and equal to KmA,wheremA � K�1 is the mean of the messages Aij . Thus,yij � K�1, �i � K�1, and hEi � K�2. The physialpiture of this saling behavior is that the total urrentrequired by a node to satisfy its apaity onstraint isshared by the links. After resaling, the physial quan-tities suh as K2hEi, P (Ky)=K and P (K�)=K beomepurely dependent on the average apaity hxi.For inreasing �nite values of K, Fig. 1(b) shows theommon trend of K2hEi dereasing with hxi exponen-tially, and gradually approahing the large K limit. Thesaling property extends to the dynamis of optimiza-tion (Fig. 1(b) inset). As shown in Fig. 2(a), the ur-rent distribution P (Ky)=K onsists of a delta funtionomponent at y=0 and a ontinuous omponent, whosebreadth dereases with hxi. Remarkably, the distribu-tions for di�erent onnetivities ollapse almost perfetlyafter the urrents are resaled by K�1, with a very mild

dependene on K and gradually approahing the largeKlimit. As shown in the inset of Fig. 2(a), the fration ofidle links inreases with hxi. Hene the urrent-arryinglinks form a perolating luster at a low hxi, and breaksinto isolated lusters at a high hxi. The fration has aweak dependene on the onnetivity, on�rming the al-most universal distributions resaled for di�erent K.Sine the urrent on a link sales as K�1, the allo-ated resoure of a node should have a weak dependeneon the onnetivity. De�ning the resoure at node i byri � xi+Pj Aijyij , the resoure distribution P (r) shownin Fig. 2(b) on�rms this behavior even at low onne-tivities. The fration of nodes with unsaturated apaityonstraints inreases with the average apaity, and isweakly dependent on the onnetivity (Fig. 2(b) inset).Hene the saturated nodes form a perolating luster at alow average apaity, and breaks into isolated lusters ata high average apaity, It is interesting to note that atthe average apaity of 0.45, below whih a plateau startsto develop in the relaxation rate of the reursion relation,Eq. (1), the fration of unsaturated nodes is about 0.53,lose to the perolation threshold of 0.5 for =3.In summary, using the example of the resoure alloa-tion problem on sparsely onneted networks, we havedemonstrated the use of message-passing methods forequilibration. This extends the onventional usage ofBayesian message passing for inferene in problems withdisrete variables to problems with ontinuous variables(suh as in optimization), opening up a rih area forfurther investigations with many potential appliations.The study also reveals the saling properties of the re-soure alloation model, showing that the resoure dis-tribution on the nodes depends prinipally on the net-workwide availability of resoures, and is only weaklydependent on the onnetivity. The links share the taskof resoure provision among themselves, leading to ur-rent distributions that are almost universally dependenton the resoure availability after resaling.AknowledgmentsThis work is partially supported by the ResearhGrant Counil of Hong Kong (grants HKUST6062/02P,DAG04/05.SC25 and DAG05/06.SC36) and EVER-GROW, IP No. 1935 in FP6 of the EU.[1℄ H. Nishimori, Statistial Physis of Spin Glasses and In-formation Proessing, (OUP, Oxford UK, 2001).[2℄ M. Opper and D. Saad, Advaned Mean Field Methods(MIT press, Cambridge, MA, 2001).[3℄ D. J. C. Makay, Information Theory, Inferene and Learn-ing Algorithms, (CUP, Cambridge UK, 2003).[4℄ N. Skantzos, I. P. Castillo, and J. P. L. Hathett,arXiv:ond-mat/0508609 (2005).[5℄ D. Bertsekas, Linear Network Optimzation (MIT Press,
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